MHB Find the number of real ordered pairs (y,a)

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around finding the number of real ordered pairs (y, a) that satisfy a specific cubic equation within the range 0 ≤ y ≤ 2.5. A participant suggests treating y as the independent variable to express a as a function of y, leading to a derived formula for a. After further analysis and graphing the function, it is concluded that there are infinitely many real ordered pairs (y, a) for the specified range, except for the case when a equals 1.3453. The problem appears to be resolved successfully.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

This is another interesting problem that I tried to work on it with no luck so far to break the code...

Problem:

Find the number of real order pairs of $(y, a)$ that satisfy $$100y^3-3\left( 150+\frac{a}{8} \right)y^2+3\left( 125+\frac{5a}{8} \right)y-3\left( \frac{59a}{96}-\frac{75}{2} \right)=0$$ such that $0 \le y \le 2.5$.

At first glance, my mind draws a blank and this is not good because whenever this happens to me, chances are I will not be able to solve the problem. And here I am now, asking for a modicum of help or ideas to crack this problem.


Thanks.
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

This is another interesting problem that I tried to work on it with no luck so far to break the code...

Problem:

Find the number of real order pairs of $(y, a)$ that satisfy $$100y^3-3\left( 150+\frac{a}{8} \right)y^2+3\left( 125+\frac{5a}{8} \right)y-3\left( \frac{59a}{96}-\frac{75}{2} \right)=0$$ such that $0 \le y \le 2.5$.

At first glance, my mind draws a blank and this is not good because whenever this happens to me, chances are I will not be able to solve the problem. And here I am now, asking for a modicum of help or ideas to crack this problem.


Thanks.


If y is the independent variable You can to arrive to write a single valued function $\displaystyle a = \varphi(y)$ because Your equation is linear in a, so that is...

$\displaystyle f(y)\ a + g(y) = 0 \implies \varphi(y) = - \frac{g(y)}{f(y)}\ (1)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
If y is the independent variable You can to arrive to write a single valued function $\displaystyle a = \varphi(y)$ because Your equation is linear in a, so that is...

$\displaystyle f(y)\ a + g(y) = 0 \implies \varphi(y) = - \frac{g(y)}{f(y)}\ (1)$

Kind regards

$\chi$ $\sigma$

Thanks for your reply, chisigma.

To be honest with you:o, I have actually tried that (I am sorry for not showing my attempt in the first place) and found that there really is nothing much to do afterwards but I might be wrong.

According to your suggestion, I get:

$$100y^3-3(150)y^2+3(125)y+3(\frac{75}{2})=a\left( \frac{3y^2}{8}-\frac{15y}{8}+\frac{59}{32} \right)$$

And I even sketched the functions of $f(y)=100y^3-3(150)y^2+3(125)y+3(\frac{75}{2})$ and $g(y)=\dfrac{3y^2}{8}-\dfrac{15y}{8}+\dfrac{59}{32}$ but I don't see the relation between $a$ and the given restriction where $0 \le y \le 2.5$ and the newly formed equation, and hence how to find the number of real order pairs of $(a, y)$ based on that.
 
Hmm...if I express $a$ as the subject of the formula, I get:

$$a=\frac{100y^3-3(150)y^2+3(125)y+3(\frac{75}{2})}{\large \left( \frac{3y^2}{8}-\frac{15y}{8}+\frac{59}{32} \right)}$$

$$\;\;\;=\frac{3200y^3-14400y^2+12000y+3600}{12y^2-60y+59}$$

$$\;\;\;=\frac{800y}{3}+\frac{400}{3}+\frac{12800}{3} \left(\frac{y-1}{12y^2-60y+59} \right)$$

$$\;\;\;=\frac{800y}{3}+\frac{400}{3}+\frac{12800}{3} \left(\frac{y-1}{12(y-3.6547)(y-1.3453)} \right)$$

And if I plot the sketch of $a$ versus $y$, I get:

View attachment 1585

From the graph, we can tell there are infinitely many real order pairs of $(y, a)$, with $a\ne 1.3453$ for $0 \le y \le 2.5$.

I think I have solved this problem! :)
 

Attachments

  • Find (a,y).JPG
    Find (a,y).JPG
    18.5 KB · Views: 110
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top