MHB Find the Radius and Center of a Circle

squexy
Messages
18
Reaction score
0
Can someone show me how to resolve this question?

A particular circle in the standard (x,y) coordinate
plane has an equation of (x − 5)2 + y2 = 38. What are
the radius of the circle, in coordinate units, and the
coordinates of the center of the circle?
radius center
F. √38 ( 5,0)
G. 19 ( 5,0)
H. 38 ( 5,0)
J. √38 (−5,0)
K. 19 (−5,0)The answer is F
 
Mathematics news on Phys.org
squexy said:
Can someone show me how to resolve this question?

A particular circle in the standard (x,y) coordinate
plane has an equation of $(x − 5)^2 + y^2 = 38$. What are
the radius of the circle, in coordinate units, and the
coordinates of the center of the circle?
radius center
F. √38 ( 5,0)
G. 19 ( 5,0)
H. 38 ( 5,0)
J. √38 (−5,0)
K. 19 (−5,0)The answer is F

Hi squexy! Welcome to MHB! :)

The general equation of a circle is:
$$(x-a)^2 + (y-b)^2 = r^2$$
where $r$ is the radius and $(a,b)$ is the center.

Your equation can be written as:
$$(x − 5)^2 + (y-0)^2 = (\sqrt{38})^2$$

This shows that the radius is $\sqrt{38}$ and the center is $(5,0)$.
 
I like Serena said:
Hi squexy! Welcome to MHB! :)

The general equation of a circle is:
$$(x-a)^2 + (y-b)^2 = r^2$$
where $r$ is the radius and $(a,b)$ is the center.

Your equation can be written as:
$$(x − 5)^2 + (y-0)^2 = (\sqrt{38})^2$$

This shows that the radius is $\sqrt{38}$ and the center is $(5,0)$.
Thank you for the answer.

Why is 38 in square root?
(x−5)2+(y−0)2= (√38 )²

Since the equation given is (x−5)2+y2=38. shouldn't the equation transferred to the circle formula be written as:

(x−5)2+(y−0)2= (38 )²
 
squexy said:
Thank you for the answer.

Why is 38 in square root?
(x−5)2+(y−0)2= (√38 )²

Since the equation given is (x−5)2+y2=38. shouldn't the equation transferred to the circle formula be written as:

(x−5)2+(y−0)2= (38 )²

Well, $(38)^2 = 38 \cdot 38 = 1444$. This does not match the $38$ in the original equation.

What we need is a number for $r$ that when squared gives us $38$. This is what the square root is. It means that $(\sqrt 38)^2 = \sqrt 38 \cdot \sqrt 38 = 38$, which is what is required.
 
Look again at post #2.

The form we should have:

$(x - a)^2 + (y - b)^2 = r^2$

What we do have:

$(x - 5)^2 + y^2 = 38$.

It's clear from this that the "$x$" part is already what we need, so $a = 5$.

The "$y$" part is a bit trickier, we solve:

$(y - b)^2 = y^2$

$y^2 - 2by + b^2 = y^2$.

$b(b - 2y) = 0$. <---this has to be true for ALL $y$, and not just when $y = \dfrac{b}{2}$ ($b$ is a constant).

We conclude that $b = 0$.

The only thing left to do is solve:

$r^2 = 38$.

This happens when $r = \pm \sqrt{38}$.

Since a radius is always positive, we take the positive square root for $r$.

The number on the RHS of the standard circle equation is the radius SQUARED, not the radius. For example, a circle of radius 3, centered at the origin has equation:

$x^2 + y^2 = 9$ <---note we have 9, not 3.

$(9,0)$ does not lie on this circle, since:

$9^2 + 0^2 = 81 \neq 9$.

$(3,0)$ DOES lie on this circle, since:

$3^2 + 0^2 = 9$.
 
I like Serena said:
Well, $(38)^2 = 38 \cdot 38 = 1444$. This does not match the $38$ in the original equation.

What we need is a number for $r$ that when squared gives us $38$. This is what the square root is. It means that $(\sqrt 38)^2 = \sqrt 38 \cdot \sqrt 38 = 38$, which is what is required.
Thanks ^.^
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
9
Views
2K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
2K
Back
Top