MHB Find the Radius of 4th Circle When All are Tangent: Hint d/2

AI Thread Summary
The discussion focuses on finding the radius of a fourth circle tangent to three others, with the centers of the three circles aligned on a line and the fourth circle's center at a distance d from that line. The key hint provided is that the radius of the fourth circle is d/2. Participants express confusion about the variable d and seek clarification on how this relationship holds for different proportions. The solution involves applying Descartes' theorem and Heron's formula to derive the radius in terms of the distance d. Ultimately, the conclusion is that the radius of the fourth circle consistently equals half the distance d.
Andrei1
Messages
36
Reaction score
0
View attachment 741
The centers of three circles are situated on a line. The center of the fourth circle is situated at given distance d from that line. What is the radius of the fourth circle if we know that each circle is tangent to other three. Please give me a hint, if you can. Answer: $$d/2.$$
 

Attachments

  • image.jpg
    image.jpg
    45.6 KB · Views: 110
Mathematics news on Phys.org
Re: four circles

It is not clear what is d from the picture .
 
Re: four circles

ZaidAlyafey said:
It is not clear what is d from the picture .

Andrei said:
The center of the fourth circle is situated at given distance d from that line.

I am also interested in the solution.

Andrei said:
The center of the fourth circle is situated at given distance d from that line.

I am also interested in the solution.

Edit:

I also don't know where to start with this one.

But I really wonder why this works for all proportions in which the centre of the biggest circle is divided into.

It looks like d/2 is the radius of the 4th circle for all proportions (by my visualisation).

But to start working on it,I think I have to get to paper and pencil.

At first I would be looking for the case in which the centre of the big circle is divided into two equal parts as I assume it is easier to understand.
 
Last edited:
Andrei said:
The centers of three circles are situated on a line. The center of the fourth circle is situated at given distance d from that line. What is the radius of the fourth circle if we know that each circle is tangent to other three. Please give me a hint, if you can. Answer: $$d/2.$$
fourcircles.png


Write $r_1,\ r_2,\ r_3,\ r_4$ for the radii of the circles centred at $O_1,\ O_2,\ O_3,\ O_4$ respectively. Notice that $r_1 = r_2+r_3$. To calculate $r_4$ in terms of $r_2$ and $r_3$, use Descartes' theorem. For that, you need to use the curvatures $k_i = \pm1/r_i$ $(i=1,2,3,4)$. The first of these, $k_1$, will be negative (because the large circle touches the other three internally). Descartes' theorem says that $k_4 = k_1+k_2+k_3 \pm\sqrt{k_1k_2 + k_2k_3 + k_3k_1}$. When you substitute $k_1 = -1/(r_2+r_3)$, $k_i = 1/r_i$ for $i=2,3,4$, you find that the part inside the square root sign is zero (this corresponds to the fact that the centres $O_1,\ O_2,\ O_3$ are collinear). That gives you a formula for $r_4$ in terms of $r_2$ and $r_3$.

Now you have to bring in the distance $d$. I think the neatest way to do that is to use the fact that the area of triangle $O_2O_3O_4$ is $\frac12d(r_2+r_3)$. It is also given by Heron's formula in terms of $r_2,\ r_3,\ r_4$. Compare the two results and you will find that $r_4 = \frac12d$.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top