MHB Find the radius of the sector adjoining a triangle

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Radius Triangle
AI Thread Summary
The discussion focuses on finding the radius of a sector adjoining a triangle, where the area of the sector equals the area of the triangle. The formula used for the area of the sector is derived, leading to the equation involving the radius, r. After solving, it is determined that the radius r is 9 cm. Participants confirm the correctness of this solution through verification of the area calculations. The final consensus is that r equals 9 cm, with suggestions to use the π symbol for accuracy in calculations.
mathlearn
Messages
331
Reaction score
0
https://i.imgsafe.org/5172eee94d.jpg

For a closer look click https://i.imgsafe.org/5172eee94d.jpg

We know that the area of the sector should be $\frac{40}{360}$*$\frac{22}{7}$*$r$*r

Any ideas on how to begin?

Many Thanks:)
 
Mathematics news on Phys.org
We know the area of the triangle and the area of the sector are equal, so using the respective formula for those areas we may state:

$$\frac{1}{2}(2\pi)(r)=\frac{1}{2}\left(40^{\circ}\cdot\frac{\pi}{180^{\circ}}\right)r^2$$

What do you get when solving for $r$?
 
MarkFL said:
We know the area of the triangle and the area of the sector are equal, so using the respective formula for those areas we may state:

$$\frac{1}{2}(2\pi)(r)=\frac{1}{2}\left(40^{\circ}\cdot\frac{\pi}{180^{\circ}}\right)r^2$$

What do you get when solving for $r$?

$\displaystyle \frac{1}{2}(2\pi)(r)=\frac{1}{2}\left(40^{\circ}\cdot\frac{\pi}{180^{\circ}}\right)r^2$

$\displaystyle (\pi)(r)=\left(\frac{\pi}{9^{\circ}}\right)r^2$

$9 \displaystyle (\pi)(r)=\pi r^2$

Now Let's use factorization to find r ,

$9 \displaystyle (\pi)(r)=\pi r^2$

$9 \displaystyle (\pi r)=(\pi r) * r $

$9 cm =r$

Now to check whether It is correct,

MarkFL said:
We know the area of the triangle and the area of the sector are equal

$ \displaystyle \frac{1}{2} * 2 * \frac{22}{7} * 9 = \frac{22}{7} * \frac{40}{360}* 9^2$

$ \displaystyle \frac{22}{7} * 9 = \frac{22}{7} * \frac{1}{9}* 9^2$

$ \displaystyle \frac{22}{7} * 9 = \frac{22}{7} * \frac{1}{9}* 9 * 9$

$ \displaystyle \frac{22}{7} * 9 = \frac{22}{7} * 9 $

Correct I guess ? :)

Many Thanks :)
 
Last edited:
Yes, I also got:

$$r=9\text{ cm}$$

In your second line, the degrees would have "cancelled" and so you would just have:

$$(\pi)(r)=\left(\frac{\pi}{9}\right)r^2$$

When checking the answer, I would simply use the $\pi$ symbol rather than a rational approximation for $\pi$. :)
 
:) Thanks For the advice.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top