Find the radius of the sector adjoining a triangle

  • Context: MHB 
  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Radius Triangle
Click For Summary

Discussion Overview

The discussion revolves around finding the radius of a sector that adjoins a triangle, focusing on the relationship between the areas of the triangle and the sector. The conversation includes mathematical reasoning and verification of calculations.

Discussion Character

  • Mathematical reasoning, Homework-related

Main Points Raised

  • One participant proposes that the area of the sector can be expressed as $\frac{40}{360}*\frac{22}{7}*r*r$ and seeks guidance on how to start solving for $r$.
  • Another participant states that since the area of the triangle and the area of the sector are equal, they can set up the equation $\frac{1}{2}(2\pi)(r)=\frac{1}{2}\left(40^{\circ}\cdot\frac{\pi}{180^{\circ}}\right)r^2$ and asks what $r$ would be when solved.
  • A later reply reiterates the same equation and provides a step-by-step solution leading to $r=9$ cm, confirming the equality of the areas.
  • Another participant agrees with the solution of $r=9$ cm and suggests using the $\pi$ symbol instead of a rational approximation for verification.
  • One participant expresses gratitude for the advice given during the discussion.

Areas of Agreement / Disagreement

Participants generally agree on the solution that $r=9$ cm, but there are variations in how the calculations are presented and verified.

Contextual Notes

There are some assumptions regarding the formulas used for the areas of the triangle and the sector, and the discussion does not resolve potential ambiguities in the calculations.

mathlearn
Messages
331
Reaction score
0
https://i.imgsafe.org/5172eee94d.jpg

For a closer look click https://i.imgsafe.org/5172eee94d.jpg

We know that the area of the sector should be $\frac{40}{360}$*$\frac{22}{7}$*$r$*r

Any ideas on how to begin?

Many Thanks:)
 
Mathematics news on Phys.org
We know the area of the triangle and the area of the sector are equal, so using the respective formula for those areas we may state:

$$\frac{1}{2}(2\pi)(r)=\frac{1}{2}\left(40^{\circ}\cdot\frac{\pi}{180^{\circ}}\right)r^2$$

What do you get when solving for $r$?
 
MarkFL said:
We know the area of the triangle and the area of the sector are equal, so using the respective formula for those areas we may state:

$$\frac{1}{2}(2\pi)(r)=\frac{1}{2}\left(40^{\circ}\cdot\frac{\pi}{180^{\circ}}\right)r^2$$

What do you get when solving for $r$?

$\displaystyle \frac{1}{2}(2\pi)(r)=\frac{1}{2}\left(40^{\circ}\cdot\frac{\pi}{180^{\circ}}\right)r^2$

$\displaystyle (\pi)(r)=\left(\frac{\pi}{9^{\circ}}\right)r^2$

$9 \displaystyle (\pi)(r)=\pi r^2$

Now Let's use factorization to find r ,

$9 \displaystyle (\pi)(r)=\pi r^2$

$9 \displaystyle (\pi r)=(\pi r) * r $

$9 cm =r$

Now to check whether It is correct,

MarkFL said:
We know the area of the triangle and the area of the sector are equal

$ \displaystyle \frac{1}{2} * 2 * \frac{22}{7} * 9 = \frac{22}{7} * \frac{40}{360}* 9^2$

$ \displaystyle \frac{22}{7} * 9 = \frac{22}{7} * \frac{1}{9}* 9^2$

$ \displaystyle \frac{22}{7} * 9 = \frac{22}{7} * \frac{1}{9}* 9 * 9$

$ \displaystyle \frac{22}{7} * 9 = \frac{22}{7} * 9 $

Correct I guess ? :)

Many Thanks :)
 
Last edited:
Yes, I also got:

$$r=9\text{ cm}$$

In your second line, the degrees would have "cancelled" and so you would just have:

$$(\pi)(r)=\left(\frac{\pi}{9}\right)r^2$$

When checking the answer, I would simply use the $\pi$ symbol rather than a rational approximation for $\pi$. :)
 
:) Thanks For the advice.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
2K