Find the radius of the small circle O_2

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Circle Radius
Click For Summary
SUMMARY

The radius of the small circle O_2 is definitively calculated to be 6 units. This conclusion is derived from applying the cosine rule to a triangle formed by the center of the green circle and the endpoints of a red baseline, with sides measuring 36-r, 36+r, and 36. The equation simplifies to yield the radius value of r=6. The discussion also highlights the contributions of a user named ILS, who provided the solution first.

PREREQUISITES
  • Understanding of the cosine rule in triangle geometry
  • Familiarity with basic algebraic manipulation
  • Knowledge of circle properties and definitions
  • Ability to interpret geometric diagrams
NEXT STEPS
  • Study the cosine rule in-depth to understand its applications in various geometric problems
  • Explore advanced geometric properties of circles and their relationships with triangles
  • Learn about different methods for calculating areas and perimeters of circles
  • Investigate the implications of radius calculations in real-world applications, such as engineering and design
USEFUL FOR

Mathematicians, geometry students, educators, and anyone interested in solving geometric problems involving circles and triangles.

Albert1
Messages
1,221
Reaction score
0
find the radius of the small circle O_2:
View attachment 1660
 

Attachments

  • radius of the small circle.jpg
    radius of the small circle.jpg
    9.3 KB · Views: 98
Mathematics news on Phys.org
Re: find the radius of the small circle O_2

We can draw a triangle from the left bottom corner, to the center of the small circle, to the right bottom corner.
And then split it into 2 rectangular triangles.

Let's call the radius of the small circle x.
Then the left rectangular triangle has hypotenuse (36-x) and horizontal side at the x-axis (x).
And the right rectangular triangle has hypotenuse (36+x) and horizontal side at the x-axis (36-x).

Since they share their third side, the following equation must hold (Pythagoras):
$$(36-x)^2 - x^2 = (36+x)^2 - (36-x)^2$$
$$(36+x)^2 - 2(36-x)^2 + x^2 = 0$$
$$(36^2+2\cdot 36 x +x^2) - 2(36^2-2\cdot 36 x + x^2) + x^2 = 0$$
$$6\cdot 36 x = 36^2$$
$$x = 6$$
$\blacksquare$
 
Re: find the radius of the small circle O_2

Albert said:
find the radius of the small circle O_2:
https://www.physicsforums.com/attachments/1660
[sp]
Let $r$ be the radius of the green circle. Draw the triangle whose vertices are the two ends of the red baseline and the centre of the green circle (the points labelled O, O_2 and O-1 in the diagram). The lengths of its sides are $36-r$, $36+r$ and $36$. The angle labelled $\theta$ has $\cos\theta = \dfrac r{36-r}$. The cosine rule then gives the equation $(36+r)^2 = 36^2 + (36-r)^2 -2\cdot36(36-r)\dfrac r{36-r},$ which simplifies to $r=6.$[/sp]

Edit. Yet again, ILS got there first (and I never even noticed).
 

Attachments

  • radii.jpg
    radii.jpg
    7.1 KB · Views: 96
Last edited:
Re: find the radius of the small circle O_2

Opalg said:
Edit. Yet again, ILS got there first (and I never even noticed).

Must be my new avatar.
Sometimes it makes me feel imaginary.
 
Re: find the radius of the small circle O_2

I like Serena said:
Must be my new avatar.
Sometimes it makes me feel imaginary.

The invisible : not recognizable neither by name nor by avatar living in his imaginary complex paradigm , just kidding (Punch) .
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K