MHB Find the Range of y for $a,y \in R$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Range
AI Thread Summary
The expression for y is defined as y = √(a² + a + 1) - √(a² - a + 1). Through analysis, it is determined that y can be represented geometrically, leading to the conclusion that the range of y is constrained between -1 and 1. The mathematical reasoning involves evaluating the distances from points A and B to point P on a coordinate plane. Ultimately, the range of y is confirmed to be -1 < y < 1.
Albert1
Messages
1,221
Reaction score
0
$a,y \in R$

$y=\sqrt {a^2+a+1} - \sqrt {a^2-a+1}$

please find the range of y
 
Mathematics news on Phys.org
My solution:

Computing the derivative of $y$ with respect to $a$, we find:

$$\frac{dy}{da}=\frac{(2a+1)\sqrt{a^2-a+1}-(2x-1)\sqrt{a^2+a+1}}{2\sqrt{a^2-a+1}\sqrt{a^2+a+1}}$$

Analysis of the discriminants of the radicands in the denominator reveal no critical values there. Equating the numerator to zero, we find:

$$(2a+1)\sqrt{a^2-a+1}=(2a-1)\sqrt{a^2+a+1}$$

Squaring, we find:

$$\left(4a^2+4a+1 \right)\left(a^2-a+1 \right)=\left(4a^2-4a+1 \right)\left(a^2+a+1 \right)$$

$$4a^4+a^2+3a+1=4a^4+a^2-3a+1$$

$$a=-a$$

$$a=0$$

A check reveals that this is an extraneous root, thus the original function is monotonic. And since $y'(0)>0$ we know the function is strictly increasing.

We can also see that the function is odd, so its range will be symmetric about $y=0$.

So, looking at:

$$L=\lim_{a\to\infty}y(a)=\lim_{a\to\infty}\frac{2a}{\sqrt{a^2+a+1}+\sqrt{a^2-a+1}}=\lim_{a\to\infty}\frac{2}{\sqrt{1+\frac{1}{a}+\frac{1}{a^2}}+\sqrt{1-\frac{1}{a}+\frac{1}{a^2}}}=1$$

We then conclude that:

$$-1<y<1$$.
 
Albert said:
$a,y \in R$

$y=\sqrt {a^2+a+1} - \sqrt {a^2-a+1}$

please find the range of y

$y=\sqrt{[a+(1/2)]^2+(\sqrt 3/2)^2} -\sqrt{[a-(1/2)]^2+(\sqrt 3/2)^2} $

$ *A(\dfrac{-1}{2},\dfrac {\sqrt 3}{2} ) \,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\ \,\,\,\,\,\, \,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\ \,\,\,\,\,\,\,\,*B(\dfrac{1}{2},\dfrac {\sqrt 3}{2} )$$ \,\,\,\,\,\,\,\, \,\,\,\,\,\,\,\ \,\,\,\,\,\,*P(a,0)$

we can consider y =$

\begin{vmatrix} AP \end{vmatrix} - \begin{vmatrix} BP \end{vmatrix}<\begin{vmatrix} AB \end{vmatrix}=1$
$\therefore -1<y<1$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top