MHB Find the smallest possible value 1-1/(n_1)-1/(n_2)-1/(n_3)

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Value
AI Thread Summary
The smallest possible value of the expression 1 - (1/n1) - (1/n2) - (1/n3) occurs when n1, n2, and n3 are distinct positive integers that satisfy the condition (1/n1) + (1/n2) + (1/n3) < 1. The minimum is achieved with n1 = 3, n2 = 4, and n3 = 5, resulting in a value of 13/60. The proof involves treating the sum of the fractions as a single quantity and minimizing the expression accordingly. Participants in the discussion noted the importance of distinct integers and provided corrections to previous answers. The final conclusion confirms that the minimum value is indeed 13/60.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find, with proof, the smallest possible value of $1-\frac{1}{n_1}-\frac{1}{n_2}-\frac{1}{n_3}$

where $n_1,n_2$ and $n_3$ are different positive integers, that satisfy:$\frac{1}{n_1}+\frac{1}{n_2}+\frac{1}{n_3} < 1.$
 
Mathematics news on Phys.org
First, $1- \frac{1}{x_1}- \frac{1}{x_2}- \frac{1}{x_3}= 1- \left(\frac{1}{x_1}
+ \frac{1}{x_2}+ \frac{1}{x_3}\right)$ so we can treat $\frac{1}{x_1}
+ \frac{1}{x_2}+ \frac{1}{x_3}$ as a single quantity.

1- 3/x= (x- 3)/x is smallest when x= 3. Since $x_1$, $x_2$, and $x_3$ have be distinct integers, $1- \frac{1}{x_1}- \frac{1}{x_2}- \frac{1}{x_3}$ will be minimum when $x_1= 3$, $x_2= 4$, and $x_3= 5$. In that case, $1- \frac{1}{x_1}- \frac{1}{x_2}- \frac{1}{x_3}= 1- \frac{1}{3}- \frac{1}{4}- \frac{1}{5}= \frac{60}{60}- \frac{20}{60}- \frac{15}{60}- \frac{12}{60}= \frac{13}{60}$
 
Hi, Country Boy
Your answer is not correct. Also please note, that any contribution should be hidden by spoiler tags. Thankyou.
 
The problem involves maximizing $\dfrac1{n_1}+\dfrac1{n_2}+\dfrac1{n_3}$. We can thus let $n_1=2$ and $n_2=3$. Then $\dfrac12+\dfrac13+\dfrac1{n_3}<1$ $\implies$ $\dfrac1{n_3}<\dfrac16$ $\implies$ $n_3=7$. So the minimum value of $1-\left(\dfrac1{n_1}+\dfrac1{n_2}+\dfrac1{n_3}\right)$ is $1-\left(\dfrac12+\dfrac13+\dfrac17\right)=\dfrac1{42}$.
 
Olinguito said:
The problem involves maximizing $\dfrac1{n_1}+\dfrac1{n_2}+\dfrac1{n_3}$. We can thus let $n_1=2$ and $n_2=3$. Then $\dfrac12+\dfrac13+\dfrac1{n_3}<1$ $\implies$ $\dfrac1{n_3}<\dfrac16$ $\implies$ $n_3=7$. So the minimum value of $1-\left(\dfrac1{n_1}+\dfrac1{n_2}+\dfrac1{n_3}\right)$ is $1-\left(\dfrac12+\dfrac13+\dfrac17\right)=\dfrac1{42}$.
You´re right, Olinguito (Yes)

Thankyou for your participation!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top