MHB Find the smallest possible value 1-1/(n_1)-1/(n_2)-1/(n_3)

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Value
Click For Summary
SUMMARY

The smallest possible value of the expression $1 - \frac{1}{n_1} - \frac{1}{n_2} - \frac{1}{n_3}$, where $n_1$, $n_2$, and $n_3$ are distinct positive integers satisfying $\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} < 1$, is achieved with $n_1 = 3$, $n_2 = 4$, and $n_3 = 5$. This results in a minimum value of $\frac{13}{60}$. The proof involves treating the sum $\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$ as a single quantity and optimizing the expression accordingly.

PREREQUISITES
  • Understanding of rational expressions and inequalities
  • Familiarity with distinct positive integers
  • Basic knowledge of algebraic manipulation
  • Concept of optimization in mathematical expressions
NEXT STEPS
  • Study the properties of rational functions and their minima
  • Explore optimization techniques in algebra
  • Learn about inequalities involving sums of fractions
  • Investigate the use of distinct integers in mathematical proofs
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in optimization problems involving rational expressions.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find, with proof, the smallest possible value of $1-\frac{1}{n_1}-\frac{1}{n_2}-\frac{1}{n_3}$

where $n_1,n_2$ and $n_3$ are different positive integers, that satisfy:$\frac{1}{n_1}+\frac{1}{n_2}+\frac{1}{n_3} < 1.$
 
Mathematics news on Phys.org
First, $1- \frac{1}{x_1}- \frac{1}{x_2}- \frac{1}{x_3}= 1- \left(\frac{1}{x_1}
+ \frac{1}{x_2}+ \frac{1}{x_3}\right)$ so we can treat $\frac{1}{x_1}
+ \frac{1}{x_2}+ \frac{1}{x_3}$ as a single quantity.

1- 3/x= (x- 3)/x is smallest when x= 3. Since $x_1$, $x_2$, and $x_3$ have be distinct integers, $1- \frac{1}{x_1}- \frac{1}{x_2}- \frac{1}{x_3}$ will be minimum when $x_1= 3$, $x_2= 4$, and $x_3= 5$. In that case, $1- \frac{1}{x_1}- \frac{1}{x_2}- \frac{1}{x_3}= 1- \frac{1}{3}- \frac{1}{4}- \frac{1}{5}= \frac{60}{60}- \frac{20}{60}- \frac{15}{60}- \frac{12}{60}= \frac{13}{60}$
 
Hi, Country Boy
Your answer is not correct. Also please note, that any contribution should be hidden by spoiler tags. Thankyou.
 
The problem involves maximizing $\dfrac1{n_1}+\dfrac1{n_2}+\dfrac1{n_3}$. We can thus let $n_1=2$ and $n_2=3$. Then $\dfrac12+\dfrac13+\dfrac1{n_3}<1$ $\implies$ $\dfrac1{n_3}<\dfrac16$ $\implies$ $n_3=7$. So the minimum value of $1-\left(\dfrac1{n_1}+\dfrac1{n_2}+\dfrac1{n_3}\right)$ is $1-\left(\dfrac12+\dfrac13+\dfrac17\right)=\dfrac1{42}$.
 
Olinguito said:
The problem involves maximizing $\dfrac1{n_1}+\dfrac1{n_2}+\dfrac1{n_3}$. We can thus let $n_1=2$ and $n_2=3$. Then $\dfrac12+\dfrac13+\dfrac1{n_3}<1$ $\implies$ $\dfrac1{n_3}<\dfrac16$ $\implies$ $n_3=7$. So the minimum value of $1-\left(\dfrac1{n_1}+\dfrac1{n_2}+\dfrac1{n_3}\right)$ is $1-\left(\dfrac12+\dfrac13+\dfrac17\right)=\dfrac1{42}$.
You´re right, Olinguito (Yes)

Thankyou for your participation!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
685
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
8K
  • · Replies 4 ·
Replies
4
Views
2K