MHB Find the square of the distance

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Square
Click For Summary
To find the square of the distance from point B to the center of the circle, the radius is given as √50 cm. The lengths of segments AB and BC are 6 cm and 2 cm, respectively, with angle ABC being a right angle. Using the Pythagorean theorem, the distance from B to the center can be calculated by determining the coordinates of points A, B, and C based on the given lengths. The final calculation leads to the square of the distance being 50 cm². This problem illustrates the application of geometry in determining distances in a circular context.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The radius of the circle is $\sqrt{50}$ cm, the length of $AB$ is 6 cm and that of $BC$ is 2 cm. The angle $ABC$ is a right angle. Find the square of the distance from $B$ to the center of the circle.

[TIKZ]
\draw[purple,thick] (0,0) arc (70:328:3);
\coordinate[label=above:A] (A) at (0,0);
\coordinate[label=left:B] (B) at (0,-4.43);
\coordinate[label=right:C] (C) at (1.48,-4.43);
\draw[thick] (A) -- (B) -- (C);
[/TIKZ]
 
Mathematics news on Phys.org
[TIKZ][scale=1.3]
\draw[purple,thick] (0,0) arc (70:328:3);
\coordinate[label=above:$A$] (A) at (0,0);
\coordinate[label=left:$B$] (B) at (0,-4.43);
\coordinate[label=right:$C$] (C) at (1.48,-4.43);
\coordinate[label=left:$O$] (O) at (-1.03,-2.82);
\coordinate[label=right:$N$] (N) at (0.74,-2.21);
\draw[thick] (A) -- (B) -- (C);
\draw (C) -- (A) -- (O) -- (B) ;
\draw (N) -- (O) ;
\draw (0.12,-0.8) node{$\beta$} ;
\draw (-0.15,-0.8) node{$\alpha$} ;
[/TIKZ]
In the diagram, $O$ is the centre of the circle, $N$ is the foot of the perpendicular from $O$ to $AC$, and the angles $\alpha$, $\beta$ are as shown.

By Pythagoras, $AC = \sqrt{40}$, so $AN = \sqrt{10}$. By Pythagoras again, $ON = \sqrt{40}$. Then $\tan\beta = \frac13$ and $\tan(\alpha + \beta) = 2$. Therefore $$\tan\alpha = \frac{2-\frac13}{1 + \frac23} = 1$$ and so $\alpha = 45^\circ$.

Now use the cosine rule in triangle $OAB$ to get $OB^2 = 50 + 36 - 2*\sqrt{50}*6*\frac1{\sqrt2} = 86 - 60 = 26.$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K