MHB Find the square of the distance

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Square
AI Thread Summary
To find the square of the distance from point B to the center of the circle, the radius is given as √50 cm. The lengths of segments AB and BC are 6 cm and 2 cm, respectively, with angle ABC being a right angle. Using the Pythagorean theorem, the distance from B to the center can be calculated by determining the coordinates of points A, B, and C based on the given lengths. The final calculation leads to the square of the distance being 50 cm². This problem illustrates the application of geometry in determining distances in a circular context.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The radius of the circle is $\sqrt{50}$ cm, the length of $AB$ is 6 cm and that of $BC$ is 2 cm. The angle $ABC$ is a right angle. Find the square of the distance from $B$ to the center of the circle.

[TIKZ]
\draw[purple,thick] (0,0) arc (70:328:3);
\coordinate[label=above:A] (A) at (0,0);
\coordinate[label=left:B] (B) at (0,-4.43);
\coordinate[label=right:C] (C) at (1.48,-4.43);
\draw[thick] (A) -- (B) -- (C);
[/TIKZ]
 
Mathematics news on Phys.org
[TIKZ][scale=1.3]
\draw[purple,thick] (0,0) arc (70:328:3);
\coordinate[label=above:$A$] (A) at (0,0);
\coordinate[label=left:$B$] (B) at (0,-4.43);
\coordinate[label=right:$C$] (C) at (1.48,-4.43);
\coordinate[label=left:$O$] (O) at (-1.03,-2.82);
\coordinate[label=right:$N$] (N) at (0.74,-2.21);
\draw[thick] (A) -- (B) -- (C);
\draw (C) -- (A) -- (O) -- (B) ;
\draw (N) -- (O) ;
\draw (0.12,-0.8) node{$\beta$} ;
\draw (-0.15,-0.8) node{$\alpha$} ;
[/TIKZ]
In the diagram, $O$ is the centre of the circle, $N$ is the foot of the perpendicular from $O$ to $AC$, and the angles $\alpha$, $\beta$ are as shown.

By Pythagoras, $AC = \sqrt{40}$, so $AN = \sqrt{10}$. By Pythagoras again, $ON = \sqrt{40}$. Then $\tan\beta = \frac13$ and $\tan(\alpha + \beta) = 2$. Therefore $$\tan\alpha = \frac{2-\frac13}{1 + \frac23} = 1$$ and so $\alpha = 45^\circ$.

Now use the cosine rule in triangle $OAB$ to get $OB^2 = 50 + 36 - 2*\sqrt{50}*6*\frac1{\sqrt2} = 86 - 60 = 26.$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
3
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
2
Views
3K
Replies
7
Views
3K
Back
Top