MHB Find the square roots of 4*sqrt(3)+4(i)

  • Thread starter Thread starter Elissa89
  • Start date Start date
  • Tags Tags
    Roots Square
Elissa89
Messages
52
Reaction score
0
So I have a study guide for my final which was written by a different professor from my actual professor. So I don't understand the question, I don't know if it's because my professor did not teach this or if the wording is different from what I'm used to:

Find the square roots of 4*sqrt(3)+4(i)
 
Mathematics news on Phys.org
Elissa89 said:
So I have a study guide for my final which was written by a different professor from my actual professor. So I don't understand the question, I don't know if it's because my professor did not teach this or if the wording is different from what I'm used to:

Find the square roots of 4*sqrt(3)+4(i)

I would let:

$$y=8\left(\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)=8e^{\Large\frac{\pi}{6}i}$$

Can you proceed?
 
MarkFL said:
I would let:

$$y=8\left(\frac{\sqrt{3}}{2}+\frac{1}{2}i\right)=8e^{\Large\frac{\pi}{6}i}$$

Can you proceed?

No, i don't know what the right side means.

- - - Updated - - -

Elissa89 said:
No, i don't know what the right side means.
Actually I don' know what any of that means. Where did the 8 come from?
 
Elissa89 said:
No, i don't know what the right side means.

- - - Updated - - -Actually I don' know what any of that means. Where did the 8 come from?

You haven't studied Euler's formula? How about de Moivre's theorem?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top