Find the sum of the coefficients of ##(x+y)^{16}##

  • Thread starter Thread starter RChristenk
  • Start date Start date
Click For Summary
SUMMARY

The sum of the coefficients of the expression (x+y)^{16} is calculated by evaluating the expression at x=1 and y=1, resulting in (1+1)^{16} = 2^{16} = 65536. The initial misunderstanding arose from incorrectly moving the coefficient C_0 (which equals 1) to the left side of the equation, leading to the erroneous conclusion that the sum was 65535. The correct interpretation includes all coefficients, including C_0, confirming that the sum is indeed 65536.

PREREQUISITES
  • Understanding of binomial expansion and coefficients
  • Familiarity with the binomial theorem
  • Basic algebraic manipulation skills
  • Knowledge of combinatorial notation, specifically C_n
NEXT STEPS
  • Study the binomial theorem and its applications in combinatorics
  • Learn about combinatorial coefficients and their significance in polynomial expansions
  • Explore the concept of generating functions in combinatorial mathematics
  • Practice problems involving the evaluation of polynomial coefficients
USEFUL FOR

Students of mathematics, educators teaching algebra and combinatorics, and anyone seeking to deepen their understanding of polynomial expressions and their coefficients.

RChristenk
Messages
73
Reaction score
9
Homework Statement
Find the sum of the coefficients of ##(x+y)^{16}##
Relevant Equations
Binomial Theorem
##(x+y)^{16}=[x(1+\dfrac{y}{x})]^{16}=x^{16}(1+\dfrac{y}{x})^{16}##

## x^{16}(1+\dfrac{y}{x})^{16}=x^{16}[1+^{16}C_1(\dfrac{y}{x})+^{16}C_2(\dfrac{y}{x})^2...+^{16}C_{16}(\dfrac{y}{x})^{16}]##

Now let ##x=1,y=1##:

##1^{16}(1+1)^{16}=1^{16}(1+^{16}C_1+^{16}C_2...+^{16}C_{16})##

##2^{16}-1=^{16}C_1+^{16}C_2...+^{16}C_{16}##

Sum of coefficients = ##2^{16}-1## = ##65535##

But the answer is ##65536##. Why?
 
Physics news on Phys.org
RChristenk said:
Sum of coefficients = ##2^{16}-1## = ##65535##
The first '=' in that line is not correct. It does not follow from anything written above it.
You don't need most of the working in the OP. The sum of the coefficients will simply be the value of the expression when ##x=y=1##, since all items ##x^k y^{16-k}## will be 1. Hence the sum of the coefficients will just be ##(1+1)^{16}##.
 
  • Like
  • Informative
Likes   Reactions: chwala, e_jane and PeroK
andrewkirk said:
The first '=' in that line is not correct. It does not follow from anything written above it.
You don't need most of the working in the OP. The sum of the coefficients will simply be the value of the expression when ##x=y=1##, since all items ##x^k y^{16-k}## will be 1. Hence the sum of the coefficients will just be ##(1+1)^{16}##.
Could you tell me where I went wrong specifically? Because to me what I wrote down looks correct (although obviously it isn't). I know I could just set everything to 1 and plug it in, but then I don't really understand what's happening and it becomes a rote memory item to me.
 
RChristenk said:
Could you tell me where I went wrong specifically? Because to me what I wrote down looks correct (although obviously it isn't). I know I could just set everything to 1 and plug it in, but then I don't really understand what's happening and it becomes a rote memory item to me.
You moved the first coefficient to the left hand side and gave the answer as ##N -1## rather than ##N##. Only you can explain why you did this!
 
To rephrase @PeroK #4 :

RChristenk said:
Could you tell me where I went wrong specifically?

You overlooked that this number one is also a coefficient (##^{16}C_0## )

(easy check: same exercise with powers 0, 1, 2, ... instead of 16 :smile:)

##\ ##
 
  • Like
Likes   Reactions: FactChecker
PeroK said:
You moved the first coefficient to the left hand side and gave the answer as ##N -1## rather than ##N##. Only you can explain why you did this!
Uh..I thought ##C## represented the "C"oefficients, so naturally the digit one is moved to the other side. Now I see that is incorrect.
 
  • Like
Likes   Reactions: FactChecker and BvU

Similar threads

Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
1K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
3K