- #1
Math100
- 802
- 221
- Homework Statement
- Use the Euclidean algorithm to find integers ## a, b, c ## and ## d ## such that ## 225a+360b+432c+480d=3 ##.
- Relevant Equations
- None.
Let ## a, b, c ## and ## d ## be integers such that ## 225a+360b+432c+480d=3 ##.
Then ## 75a+120b+144c+160d=1 ##.
Applying the Euclidean algorithm produces:
## gcd(75, 120)=15, gcd(120, 144)=24 ## and ## gcd(144, 160)=16 ##.
Now we see that ## 15x+24y+16z=1 ##.
By Euclidean algorithm, we have that ## gcd(15, 24)=3 ## and ## gcd(24, 16)=8 ##, so ## 3m+8n=1 ##.
Observe that
\begin{align*}
&75A+120B=15\implies 5A+8B=1\\
&120B+144C=24\implies 5B+6C=1\\
&144C+160D=16\implies 9C+10D=1.\\
\end{align*}
This means ## A=-3, B=2, C=-1 ## and ## D=1 ##.
Thus ## -[75(-3)+120(2)]+[144(-1)+160(1)]=-15+16=1 ##.
Therefore, the integers ## a, b, c ## and ## d ## such that ## 225a+360b+432c+480d=3 ## are ## a=3, b=-2, c=-1 ## and ## d=1 ##.
Then ## 75a+120b+144c+160d=1 ##.
Applying the Euclidean algorithm produces:
## gcd(75, 120)=15, gcd(120, 144)=24 ## and ## gcd(144, 160)=16 ##.
Now we see that ## 15x+24y+16z=1 ##.
By Euclidean algorithm, we have that ## gcd(15, 24)=3 ## and ## gcd(24, 16)=8 ##, so ## 3m+8n=1 ##.
Observe that
\begin{align*}
&75A+120B=15\implies 5A+8B=1\\
&120B+144C=24\implies 5B+6C=1\\
&144C+160D=16\implies 9C+10D=1.\\
\end{align*}
This means ## A=-3, B=2, C=-1 ## and ## D=1 ##.
Thus ## -[75(-3)+120(2)]+[144(-1)+160(1)]=-15+16=1 ##.
Therefore, the integers ## a, b, c ## and ## d ## such that ## 225a+360b+432c+480d=3 ## are ## a=3, b=-2, c=-1 ## and ## d=1 ##.