MHB Find the sum of the first n terms

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum Terms
Click For Summary
The discussion centers on evaluating the sum of the series involving the arctangent function, specifically $\sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$. A user presents a solution and highlights a generalization of the sum, which states that $\sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right)$ equals $\arctan \Big(a(n+1)+b \Big) - \arctan(b)$ under the condition that $ak+b >0$. The discussion includes positive feedback on the solution provided and acknowledges contributions from other participants. Overall, the thread emphasizes the mathematical exploration of arctangent sums and their generalizations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate the sum $\displaystyle \sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$.
 
Mathematics news on Phys.org
My solution:

We are given to evaluate:

$$S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]$$

Using the identity:

$$\tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)$$

we may write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]$$

Now, using the fact that:

$$k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}$$

and the identity:

$$\cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}$$

We may now write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]$$

This is a telescoping series, hence:

$$S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)$$

Using the identity:

$$\tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}$$

We may also write:

$$S_n=\tan^{-1}(n+1)$$

And so we have found:

$$\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)$$
 
MarkFL said:
My solution:

We are given to evaluate:

$$S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]$$

Using the identity:

$$\tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)$$

we may write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]$$

Now, using the fact that:

$$k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}$$

and the identity:

$$\cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}$$

We may now write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]$$

This is a telescoping series, hence:

$$S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)$$

Using the identity:

$$\tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}$$

We may also write:

$$S_n=\tan^{-1}(n+1)$$

And so we have found:

$$\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)$$

Aww...that is a fabulous way to tackle the problem! Bravo, MarkFL! (Inlove)(Clapping)(drink)
 
A generalization is $$ \sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right) = \arctan \Big(a(n+1)+b \Big) - \arctan(b)$$

where $ak+b >0$
 
Random Variable said:
A generalization is $$ \sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right) = \arctan \Big(a(n+1)+b \Big) - \arctan(b)$$

where $ak+b >0$

Thanks for your input, Random Variable!:)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
15
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K