Find the sum of the first n terms

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum Terms
Click For Summary
SUMMARY

The discussion focuses on evaluating the sum of the first n terms of the series $\displaystyle \sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$. A notable solution presented by MarkFL involves a generalization of the series, expressed as $$ \sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right) = \arctan \Big(a(n+1)+b \Big) - \arctan(b)$$. This formula applies under the condition that $ak+b >0$, providing a structured approach to solving similar arctangent summation problems.

PREREQUISITES
  • Understanding of arctangent functions and their properties
  • Familiarity with summation notation and series
  • Basic algebraic manipulation skills
  • Knowledge of inequalities, specifically conditions like $ak+b >0$
NEXT STEPS
  • Research the properties of arctangent functions in calculus
  • Study advanced summation techniques in mathematical analysis
  • Explore generalizations of series and their applications
  • Learn about convergence criteria for infinite series
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in advanced summation techniques and series analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate the sum $\displaystyle \sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$.
 
Physics news on Phys.org
My solution:

We are given to evaluate:

$$S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]$$

Using the identity:

$$\tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)$$

we may write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]$$

Now, using the fact that:

$$k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}$$

and the identity:

$$\cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}$$

We may now write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]$$

This is a telescoping series, hence:

$$S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)$$

Using the identity:

$$\tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}$$

We may also write:

$$S_n=\tan^{-1}(n+1)$$

And so we have found:

$$\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)$$
 
MarkFL said:
My solution:

We are given to evaluate:

$$S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]$$

Using the identity:

$$\tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)$$

we may write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]$$

Now, using the fact that:

$$k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}$$

and the identity:

$$\cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}$$

We may now write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]$$

This is a telescoping series, hence:

$$S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)$$

Using the identity:

$$\tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}$$

We may also write:

$$S_n=\tan^{-1}(n+1)$$

And so we have found:

$$\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)$$

Aww...that is a fabulous way to tackle the problem! Bravo, MarkFL! (Inlove)(Clapping)(drink)
 
A generalization is $$ \sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right) = \arctan \Big(a(n+1)+b \Big) - \arctan(b)$$

where $ak+b >0$
 
Random Variable said:
A generalization is $$ \sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right) = \arctan \Big(a(n+1)+b \Big) - \arctan(b)$$

where $ak+b >0$

Thanks for your input, Random Variable!:)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K