MHB Find the sum of the first n terms

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum Terms
Click For Summary
The discussion centers on evaluating the sum of the series involving the arctangent function, specifically $\sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$. A user presents a solution and highlights a generalization of the sum, which states that $\sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right)$ equals $\arctan \Big(a(n+1)+b \Big) - \arctan(b)$ under the condition that $ak+b >0$. The discussion includes positive feedback on the solution provided and acknowledges contributions from other participants. Overall, the thread emphasizes the mathematical exploration of arctangent sums and their generalizations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate the sum $\displaystyle \sum_{i=0}^n \tan^{-1} \dfrac{1}{i^2+i+1}$.
 
Mathematics news on Phys.org
My solution:

We are given to evaluate:

$$S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]$$

Using the identity:

$$\tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)$$

we may write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]$$

Now, using the fact that:

$$k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}$$

and the identity:

$$\cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}$$

We may now write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]$$

This is a telescoping series, hence:

$$S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)$$

Using the identity:

$$\tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}$$

We may also write:

$$S_n=\tan^{-1}(n+1)$$

And so we have found:

$$\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)$$
 
MarkFL said:
My solution:

We are given to evaluate:

$$S_n=\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]$$

Using the identity:

$$\tan^{-1}(x)=\cot^{-1}\left(\frac{1}{x} \right)$$

we may write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}\left(k^2+k+1 \right) \right]$$

Now, using the fact that:

$$k^2+k+1=\frac{k(k+1)+1}{(k+1)-k}$$

and the identity:

$$\cot(\alpha-\beta)=\frac{\cot(\alpha)\cot(\beta)+1}{\cot(\beta)-\cot(\alpha)}$$

We may now write:

$$S_n=\sum_{k=0}^n\left[\cot^{-1}(k)-\cot^{-1}(k+1) \right]$$

This is a telescoping series, hence:

$$S_n=\cot^{-1}(0)-\cot^{-1}(n+1)=\frac{\pi}{2}-\cot^{-1}(n+1)$$

Using the identity:

$$\tan^{-1}(x)+\cot^{-1}(x)=\frac{\pi}{2}$$

We may also write:

$$S_n=\tan^{-1}(n+1)$$

And so we have found:

$$\sum_{k=0}^n\left[\tan^{-1}\left(\frac{1}{k^2+k+1} \right) \right]=\tan^{-1}(n+1)$$

Aww...that is a fabulous way to tackle the problem! Bravo, MarkFL! (Inlove)(Clapping)(drink)
 
A generalization is $$ \sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right) = \arctan \Big(a(n+1)+b \Big) - \arctan(b)$$

where $ak+b >0$
 
Random Variable said:
A generalization is $$ \sum_{k=0}^{n} \arctan \left( \frac{a}{a^{2}k^{2}+a(a+2b)k +(1+ab+b^{2})} \right) = \arctan \Big(a(n+1)+b \Big) - \arctan(b)$$

where $ak+b >0$

Thanks for your input, Random Variable!:)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K