MHB Find the value in terms of p and q

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Terms Value
Click For Summary
To find the value of \( \log_a(72) \) in terms of \( p \) and \( q \), the logarithm can be expressed as \( \log_a(72) = \log_a(2^3 \cdot 3^2) \). By applying the properties of logarithms, this simplifies to \( \log_a(72) = \log_a(2^3) + \log_a(3^2) \), which further breaks down to \( 3\log_a(2) + 2\log_a(3) \). Substituting the values \( \log_a(2) = p \) and \( \log_a(3) = q \) gives \( \log_a(72) = 3p + 2q \). Thus, the final expression for \( \log_a(72) \) is \( 3p + 2q \).
mathlearn
Messages
331
Reaction score
0
If $log_a 2 = P $ & $ log_a 3 = q$ find $log_a 72 $ in terms of $p$ & $q $

I'm not sure on how to begin this may be convert the logarithms to decimals :confused:

Many Thanks :)
 
Mathematics news on Phys.org
We are given:

$$\log_a(2)=p$$ and $$\log_a(3)=q$$

Now, we may write:

$$\log_a(72)=\log_a\left(2^3\cdot3^2\right)$$

Can you now proceed to use the properties of logs to express this in terms of $p$ and $q$?
 
MarkFL said:
We are given:

$$\log_a(2)=p$$ and $$\log_a(3)=q$$

Now, we may write:

$$\log_a(72)=\log_a\left(2^3\cdot3^2\right)$$

Can you now proceed to use the properties of logs to express this in terms of $p$ and $q$?

Thank you very much MarkFL (Happy) (Party)

Then expressing this in terms of $p$ & $q$,

It would be $p=3$ & $q=2$

May I know how the power of 3 on 2 & the power of 2 on 3 get derived below in the RHS

$\displaystyle \log_a(72)=\log_a\left(2^3\cdot3^2\right)$
 
mathlearn said:
Thank you very much MarkFL (Happy) (Party)

Then expressing this in terms of $p$ & $q$,

It would be $p=3$ & $q=2$

May I know how the power of 3 on 2 & the power of 2 on 3 get derived below in the RHS

$\displaystyle \log_a(72)=\log_a\left(2^3\cdot3^2\right)$

No, $p$ and $q$ don't somehow change values here. We observe that by prime factorization we have:

$$72=8\cdot9=2^3\cdot3^2$$

Hence:

$$\log_a(72)=\log_a\left(2^3\cdot3^2\right)$$

Now, you want to use the properties of logs, specifically:

$$\log_a(b^c)=c\cdot\log_a(b)$$

$$\log_a(bc)=\log_a(b)+\log_a(c)$$

to further simplify. What do you get?
 
MarkFL said:
No, $p$ and $q$ don't somehow change values here. We observe that by prime factorization we have:

$$72=8\cdot9=2^3\cdot3^2$$

Hence:

$$\log_a(72)=\log_a\left(2^3\cdot3^2\right)$$

Now, you want to use the properties of logs, specifically:

$$\log_a(b^c)=c\cdot\log_a(b)$$

$$\log_a(bc)=\log_a(b)+\log_a(c)$$

to further simplify. What do you get?

Thank you very much MarkFL (Happy) (Party)

My apologies! for being a little late in replying,

Using the given properties of logarithms,

$\log_a72 = \log_a(2^3 \cdot 3^2)\\
=\log_a (2^3) + \log_a (3^2)\\
= 3 \log_a2 + 2\log_a3\\
= 3p + 2q$

Correct ? (Smile)
 
Yes, that looks good. :D
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
955
  • · Replies 3 ·
Replies
3
Views
1K