Find the value of the ratio of m/n

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Ratio Value
Click For Summary
SUMMARY

In triangle $PQR$, points $A$, $B$, and $C$ are defined with specific ratios: $A$ is the midpoint of $QR$, $RB=3BP$, and the ratio $\frac{PC}{CQ}=\frac{m}{n}$. The areas of triangles are denoted as $y$ for triangle $RAB$, $x$ for triangle $AQC$, and $z$ for triangle $PCB$, with the relationship $x^2=yz$. The value of the ratio $\frac{m}{n}$ can be determined through these geometric properties and area relationships.

PREREQUISITES
  • Understanding of triangle geometry and midpoints
  • Knowledge of area relationships in triangles
  • Familiarity with ratios and proportions
  • Ability to interpret and manipulate algebraic expressions in geometry
NEXT STEPS
  • Study the properties of triangle midpoints and their implications on area
  • Learn about the relationship between triangle areas and their corresponding segments
  • Explore geometric ratios and their applications in problem-solving
  • Investigate the use of $\LaTeX$ for presenting mathematical solutions clearly
USEFUL FOR

Mathematicians, geometry enthusiasts, and students preparing for competitive exams who are interested in understanding area relationships in triangles and solving ratio problems.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In triangle $PQR$, the points $A,\,B,\,C$ lie on the line segments $QR$, $RP$ and $PQ$ respectively, such that $A$ is the midpoint of $QR$, $RB=3BP$ and $\dfrac{PC}{CQ}=\dfrac{m}{n}$. If $y$ is the area of triangle $RAB$, $x$ is the area of triangle $AQC$ and $z$ is the area of triangle $PCB$, and $x^2=yz$, find the value of $\dfrac{m}{n}$.
 
Mathematics news on Phys.org
Re: Find the value of the ratio of p/q

anemone said:
In triangle $PQR$, the points $A,\,B,\,C$ lie on the line segments $QR$, $RP$ and $PQ$ respectively, such that $A$ is the midpoint of $QR$, $RB=3BP$ and $\dfrac{PC}{CQ}=\dfrac{m}{n}$. If $y$ is the area of triangle $RAB$, $x$ is the area of triangle $AQC$ and $z$ is the area of triangle $PCB$, and $x^2=yz$, find the value of $\dfrac{m}{n}$.

Consider the figure below.
View attachment 2560

Choose $Q$ as the origin and the positions of $P$ and $R$ are denoted by vectors $\vec{p}$ and $\vec{r}$.

Also, let $m/n=\lambda$.

Clearly,
$$\vec{QC}=\frac{1}{\lambda+1}\vec{p}$$
$$\vec{QA}=\frac{\vec{r}}{2}$$
$$\vec{QB}=\frac{\vec{r}+3\vec{p}}{4}$$

Next, I find the areas in terms of $\vec{r}$ and $\vec{p}$,
$$x=\frac{1}{2}\left| \vec{QA}\times \vec{QC}\right|=\frac{1}{4(\lambda+1)}\left|\vec{r}\times \vec{p}\right|$$
$$y=\frac{1}{2}\left|\vec{AR}\times \vec{AB}\right|=\frac{1}{2}\left|\vec{AR}\times \left(\vec{QB}-\vec{QA}\right)\right|=\frac{1}{2}\left|\frac{\vec{r}}{2}\times \left(\frac{\vec{r}+3\vec{p}}{4}-\frac{\vec{r}}{2}\right)\right|=\frac{3}{16}\left|\vec{r}\times \vec{p}\right|$$
$$z=\frac{1}{2}\left|\vec{CP}\times \vec{CB}\right|=\frac{1}{2}\left| \frac{\lambda}{\lambda+1}\vec{p}\times \left(\vec{QB}-\vec{QC}\right)\right|=\frac{\lambda}{8(\lambda+1)}\left|\vec{r}\times \vec{p}\right|$$
As per the question,
$$x^2=yz \Rightarrow \frac{1}{16(\lambda+1)^2}=\frac{3}{16}\cdot \frac{\lambda}{8(\lambda+1)}\Rightarrow 3\lambda^2+3\lambda-8=0$$
$$\Rightarrow \boxed{\lambda=\dfrac{1}{6}\left(\sqrt{105}-3\right)}$$
(neglecting the negative root)
 

Attachments

  • triangle11.png
    triangle11.png
    4.8 KB · Views: 119
My suggested solution:
Please refer to the attached figure.

View attachment 2569

\[PQ = m+n,\: \: QR = 2p \: \: and \: \: RP=4q\\\\ x = \frac{1}{2}\cdot n\cdot p\cdot sin(Q)\\\\ y = \frac{3}{2}\cdot q\cdot p\cdot sin(R)\\\\ z = \frac{1}{2}\cdot q\cdot m\cdot sin(P)\]
\[x^2 = yz \Rightarrow n^2\cdot p^2\cdot sin^2(Q)=3\cdot q^2\cdot p\cdot m\cdot sin(R)\cdot sin(P)\;\;\;\;(1).\]

The rule of sines:

\[\frac{2p}{sin(P)}=\frac{4q}{sin(Q)}=\frac{m+n}{sin(R)}\\\\ \Rightarrow p^2 = 4\cdot q^2\cdot \frac{sin^2(P)}{sin^2(Q)} \: \: \: \: and\: \:\: \: p = \frac{1}{2}(m+n) \frac{sin(P)}{sin(R)}\]

Insertion into $(1)$ yields:

\[n^2\cdot p^2 \cdot sin^2(Q) = 4\cdot n^2\cdot q^2\cdot \frac{sin^2(P)}{sin^2(Q)}\cdot sin^2(Q)=3\cdot q^2\cdot p\cdot m\cdot sin(R)\cdot sin(P)\\\\ \Rightarrow 4\cdot n^2\cdot sin(P)=3\cdot p\cdot m \cdot sin(R) =\frac{3}{2}\cdot m\cdot (m+n)\cdot \frac{sin(P)}{sin(R)}\cdot sin(R) \\\\ \Rightarrow \left ( \frac{m}{n} \right )^2+\frac{m}{n}-\frac{8}{3}=0 \Rightarrow \frac{m}{n}=\frac{1}{2}\left ( \sqrt{\frac{35}{3}}-1 \right )\approx 1.208\]
 

Attachments

  • Trig Challenge.png
    Trig Challenge.png
    3 KB · Views: 104
Last edited:
Thanks to both of you for participating in this problem!:)

It's always great to see there are different methods to tackle a problem, thank you again for your willingness to participate and typing your solution so well in $\LaTeX$ for me and the readers! (Clapping)
 

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K