Find the value of the ratio of m/n

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Ratio Value
Click For Summary

Discussion Overview

The discussion revolves around a geometric problem involving triangle $PQR$ and points $A$, $B$, and $C$ on its sides. Participants explore the relationship between the areas of certain sub-triangles and the ratio $\frac{m}{n}$, which is defined in terms of segments $PC$ and $CQ$. The focus is on finding the value of this ratio based on the given area condition $x^2=yz$.

Discussion Character

  • Exploratory
  • Mathematical reasoning

Main Points Raised

  • Post 1 introduces the problem setup, defining the points and the area relationships.
  • Post 2 appears to reiterate the problem statement without introducing new insights or solutions.
  • Post 3 suggests a solution, although the details of this solution are not provided in the excerpt.
  • Post 4 acknowledges the contributions of participants and highlights the variety of methods to approach the problem.

Areas of Agreement / Disagreement

The discussion does not present a consensus on the value of $\frac{m}{n}$, and multiple approaches to the problem are suggested without resolution.

Contextual Notes

The problem relies on specific geometric properties and relationships that may not be fully explored or resolved in the discussion.

Who May Find This Useful

Readers interested in geometric problems, area relationships in triangles, and mathematical reasoning may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In triangle $PQR$, the points $A,\,B,\,C$ lie on the line segments $QR$, $RP$ and $PQ$ respectively, such that $A$ is the midpoint of $QR$, $RB=3BP$ and $\dfrac{PC}{CQ}=\dfrac{m}{n}$. If $y$ is the area of triangle $RAB$, $x$ is the area of triangle $AQC$ and $z$ is the area of triangle $PCB$, and $x^2=yz$, find the value of $\dfrac{m}{n}$.
 
Mathematics news on Phys.org
Re: Find the value of the ratio of p/q

anemone said:
In triangle $PQR$, the points $A,\,B,\,C$ lie on the line segments $QR$, $RP$ and $PQ$ respectively, such that $A$ is the midpoint of $QR$, $RB=3BP$ and $\dfrac{PC}{CQ}=\dfrac{m}{n}$. If $y$ is the area of triangle $RAB$, $x$ is the area of triangle $AQC$ and $z$ is the area of triangle $PCB$, and $x^2=yz$, find the value of $\dfrac{m}{n}$.

Consider the figure below.
View attachment 2560

Choose $Q$ as the origin and the positions of $P$ and $R$ are denoted by vectors $\vec{p}$ and $\vec{r}$.

Also, let $m/n=\lambda$.

Clearly,
$$\vec{QC}=\frac{1}{\lambda+1}\vec{p}$$
$$\vec{QA}=\frac{\vec{r}}{2}$$
$$\vec{QB}=\frac{\vec{r}+3\vec{p}}{4}$$

Next, I find the areas in terms of $\vec{r}$ and $\vec{p}$,
$$x=\frac{1}{2}\left| \vec{QA}\times \vec{QC}\right|=\frac{1}{4(\lambda+1)}\left|\vec{r}\times \vec{p}\right|$$
$$y=\frac{1}{2}\left|\vec{AR}\times \vec{AB}\right|=\frac{1}{2}\left|\vec{AR}\times \left(\vec{QB}-\vec{QA}\right)\right|=\frac{1}{2}\left|\frac{\vec{r}}{2}\times \left(\frac{\vec{r}+3\vec{p}}{4}-\frac{\vec{r}}{2}\right)\right|=\frac{3}{16}\left|\vec{r}\times \vec{p}\right|$$
$$z=\frac{1}{2}\left|\vec{CP}\times \vec{CB}\right|=\frac{1}{2}\left| \frac{\lambda}{\lambda+1}\vec{p}\times \left(\vec{QB}-\vec{QC}\right)\right|=\frac{\lambda}{8(\lambda+1)}\left|\vec{r}\times \vec{p}\right|$$
As per the question,
$$x^2=yz \Rightarrow \frac{1}{16(\lambda+1)^2}=\frac{3}{16}\cdot \frac{\lambda}{8(\lambda+1)}\Rightarrow 3\lambda^2+3\lambda-8=0$$
$$\Rightarrow \boxed{\lambda=\dfrac{1}{6}\left(\sqrt{105}-3\right)}$$
(neglecting the negative root)
 

Attachments

  • triangle11.png
    triangle11.png
    4.8 KB · Views: 122
My suggested solution:
Please refer to the attached figure.

View attachment 2569

\[PQ = m+n,\: \: QR = 2p \: \: and \: \: RP=4q\\\\ x = \frac{1}{2}\cdot n\cdot p\cdot sin(Q)\\\\ y = \frac{3}{2}\cdot q\cdot p\cdot sin(R)\\\\ z = \frac{1}{2}\cdot q\cdot m\cdot sin(P)\]
\[x^2 = yz \Rightarrow n^2\cdot p^2\cdot sin^2(Q)=3\cdot q^2\cdot p\cdot m\cdot sin(R)\cdot sin(P)\;\;\;\;(1).\]

The rule of sines:

\[\frac{2p}{sin(P)}=\frac{4q}{sin(Q)}=\frac{m+n}{sin(R)}\\\\ \Rightarrow p^2 = 4\cdot q^2\cdot \frac{sin^2(P)}{sin^2(Q)} \: \: \: \: and\: \:\: \: p = \frac{1}{2}(m+n) \frac{sin(P)}{sin(R)}\]

Insertion into $(1)$ yields:

\[n^2\cdot p^2 \cdot sin^2(Q) = 4\cdot n^2\cdot q^2\cdot \frac{sin^2(P)}{sin^2(Q)}\cdot sin^2(Q)=3\cdot q^2\cdot p\cdot m\cdot sin(R)\cdot sin(P)\\\\ \Rightarrow 4\cdot n^2\cdot sin(P)=3\cdot p\cdot m \cdot sin(R) =\frac{3}{2}\cdot m\cdot (m+n)\cdot \frac{sin(P)}{sin(R)}\cdot sin(R) \\\\ \Rightarrow \left ( \frac{m}{n} \right )^2+\frac{m}{n}-\frac{8}{3}=0 \Rightarrow \frac{m}{n}=\frac{1}{2}\left ( \sqrt{\frac{35}{3}}-1 \right )\approx 1.208\]
 

Attachments

  • Trig Challenge.png
    Trig Challenge.png
    3 KB · Views: 107
Last edited:
Thanks to both of you for participating in this problem!:)

It's always great to see there are different methods to tackle a problem, thank you again for your willingness to participate and typing your solution so well in $\LaTeX$ for me and the readers! (Clapping)
 

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K