MHB Find the value of the ratio of m/n

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Ratio Value
Click For Summary
In triangle PQR, points A, B, and C are defined with A as the midpoint of QR, and the ratio RB to BP is 3:1. The areas of triangles RAB, AQC, and PCB are denoted as y, x, and z respectively, with the relationship x² = yz established. The discussion revolves around finding the ratio m/n, where PC/CQ = m/n. Various methods to solve the problem are appreciated, showcasing the collaborative effort in mathematical problem-solving. The final goal is to determine the specific value of the ratio m/n.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In triangle $PQR$, the points $A,\,B,\,C$ lie on the line segments $QR$, $RP$ and $PQ$ respectively, such that $A$ is the midpoint of $QR$, $RB=3BP$ and $\dfrac{PC}{CQ}=\dfrac{m}{n}$. If $y$ is the area of triangle $RAB$, $x$ is the area of triangle $AQC$ and $z$ is the area of triangle $PCB$, and $x^2=yz$, find the value of $\dfrac{m}{n}$.
 
Mathematics news on Phys.org
Re: Find the value of the ratio of p/q

anemone said:
In triangle $PQR$, the points $A,\,B,\,C$ lie on the line segments $QR$, $RP$ and $PQ$ respectively, such that $A$ is the midpoint of $QR$, $RB=3BP$ and $\dfrac{PC}{CQ}=\dfrac{m}{n}$. If $y$ is the area of triangle $RAB$, $x$ is the area of triangle $AQC$ and $z$ is the area of triangle $PCB$, and $x^2=yz$, find the value of $\dfrac{m}{n}$.

Consider the figure below.
View attachment 2560

Choose $Q$ as the origin and the positions of $P$ and $R$ are denoted by vectors $\vec{p}$ and $\vec{r}$.

Also, let $m/n=\lambda$.

Clearly,
$$\vec{QC}=\frac{1}{\lambda+1}\vec{p}$$
$$\vec{QA}=\frac{\vec{r}}{2}$$
$$\vec{QB}=\frac{\vec{r}+3\vec{p}}{4}$$

Next, I find the areas in terms of $\vec{r}$ and $\vec{p}$,
$$x=\frac{1}{2}\left| \vec{QA}\times \vec{QC}\right|=\frac{1}{4(\lambda+1)}\left|\vec{r}\times \vec{p}\right|$$
$$y=\frac{1}{2}\left|\vec{AR}\times \vec{AB}\right|=\frac{1}{2}\left|\vec{AR}\times \left(\vec{QB}-\vec{QA}\right)\right|=\frac{1}{2}\left|\frac{\vec{r}}{2}\times \left(\frac{\vec{r}+3\vec{p}}{4}-\frac{\vec{r}}{2}\right)\right|=\frac{3}{16}\left|\vec{r}\times \vec{p}\right|$$
$$z=\frac{1}{2}\left|\vec{CP}\times \vec{CB}\right|=\frac{1}{2}\left| \frac{\lambda}{\lambda+1}\vec{p}\times \left(\vec{QB}-\vec{QC}\right)\right|=\frac{\lambda}{8(\lambda+1)}\left|\vec{r}\times \vec{p}\right|$$
As per the question,
$$x^2=yz \Rightarrow \frac{1}{16(\lambda+1)^2}=\frac{3}{16}\cdot \frac{\lambda}{8(\lambda+1)}\Rightarrow 3\lambda^2+3\lambda-8=0$$
$$\Rightarrow \boxed{\lambda=\dfrac{1}{6}\left(\sqrt{105}-3\right)}$$
(neglecting the negative root)
 

Attachments

  • triangle11.png
    triangle11.png
    4.8 KB · Views: 118
My suggested solution:
Please refer to the attached figure.

View attachment 2569

\[PQ = m+n,\: \: QR = 2p \: \: and \: \: RP=4q\\\\ x = \frac{1}{2}\cdot n\cdot p\cdot sin(Q)\\\\ y = \frac{3}{2}\cdot q\cdot p\cdot sin(R)\\\\ z = \frac{1}{2}\cdot q\cdot m\cdot sin(P)\]
\[x^2 = yz \Rightarrow n^2\cdot p^2\cdot sin^2(Q)=3\cdot q^2\cdot p\cdot m\cdot sin(R)\cdot sin(P)\;\;\;\;(1).\]

The rule of sines:

\[\frac{2p}{sin(P)}=\frac{4q}{sin(Q)}=\frac{m+n}{sin(R)}\\\\ \Rightarrow p^2 = 4\cdot q^2\cdot \frac{sin^2(P)}{sin^2(Q)} \: \: \: \: and\: \:\: \: p = \frac{1}{2}(m+n) \frac{sin(P)}{sin(R)}\]

Insertion into $(1)$ yields:

\[n^2\cdot p^2 \cdot sin^2(Q) = 4\cdot n^2\cdot q^2\cdot \frac{sin^2(P)}{sin^2(Q)}\cdot sin^2(Q)=3\cdot q^2\cdot p\cdot m\cdot sin(R)\cdot sin(P)\\\\ \Rightarrow 4\cdot n^2\cdot sin(P)=3\cdot p\cdot m \cdot sin(R) =\frac{3}{2}\cdot m\cdot (m+n)\cdot \frac{sin(P)}{sin(R)}\cdot sin(R) \\\\ \Rightarrow \left ( \frac{m}{n} \right )^2+\frac{m}{n}-\frac{8}{3}=0 \Rightarrow \frac{m}{n}=\frac{1}{2}\left ( \sqrt{\frac{35}{3}}-1 \right )\approx 1.208\]
 

Attachments

  • Trig Challenge.png
    Trig Challenge.png
    3 KB · Views: 102
Last edited:
Thanks to both of you for participating in this problem!:)

It's always great to see there are different methods to tackle a problem, thank you again for your willingness to participate and typing your solution so well in $\LaTeX$ for me and the readers! (Clapping)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K