MHB Find vector w in terms of i and j

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Terms Vector
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
The vectors $\vec{i}$ , $\vec{j}$ are unit vectors
along the x-axis and y-axis respectively.

The vectors $ \vec{u}= –\vec{i} +2\vec{j}$ and $\vec{v} = 3\vec{i} + 5 \vec{j}$ are given.

(a) Find $\vec{u}+ 2\vec{v}$ in terms of $\vec{i}$ and $\vec{j}$ .

$–\vec{i} +2\vec{j} + 2(3\vec{i} + 5 \vec{j}) = 5\vec{i}+12\vec{j}$

A vector $\vec{w}$ has the same direction as $\vec{u} + 2\vec{v} $, and has a magnitude of $26$.

magnitude of $5\vec(i)+12\vec{j}$ is $\sqrt{5^2+12^2}=13$ which is half of $26$

(b) Find $\vec{w}$ in terms of $\vec{i}$and $\vec{j}$ .

so $\vec{w} = 2(5\vec{i}+12\vec{j}) = 10\vec{i}+24{j}$

hope so anyway??
 
Mathematics news on Phys.org
Re: find vector w in terms of i and j

Your work is correct if $$\vec{v}$$ is instead given as:

$$\vec{v}=2\vec{i}+5\vec{j}$$

Otherwise, the problem needs to be reworked.
 
Re: find vector w in terms of i and j

MarkFL said:
Your work is correct if $$\vec{v}$$ is instead given as:

$$\vec{v}=2\vec{i}+5\vec{j}$$

Otherwise, the problem needs to be reworked.

this is what was given
$\displaystyle \vec{v}=3\vec{i}+5\vec{j}$

$\vec{u}+2\vec{v}= –\vec{i}+2\vec{j}+2(3\vec{i}+5\vec{j}) =5\vec{i}+12\vec{j}$
$–\vec{i}+6\vec{i}+2\vec{j}+10\vec{j}=5\vec{i}+12 \vec{j} $

this is a leading $$(-1)\vec{i}$$ which hard to see...
or did I miss something else...:confused:
 
Re: find vector w in terms of i and j

Everything you have written is correct.
 
Re: find vector w in terms of i and j

karush said:
this is what was given
$\displaystyle \vec{v}=3\vec{i}+5\vec{j}$

$\vec{u}+2\vec{v}= –\vec{i}+2\vec{j}+2(3\vec{i}+5\vec{j}) =5\vec{i}+12\vec{j}$
$–\vec{i}+6\vec{i}+2\vec{j}+10\vec{j}=5\vec{i}+12 \vec{j} $

this is a leading $$(-1)\vec{i}$$ which hard to see...
or did I miss something else...:confused:

My apologies...I somehow missed the leading negative there...(Blush)
 
Re: find vector w in terms of i and j

No prob...you are a lot more accurate than I am
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top