MHB Find vector w in terms of i and j

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Terms Vector
Click For Summary
The discussion centers on finding the vector $\vec{w}$ in terms of unit vectors $\vec{i}$ and $\vec{j}$. Given vectors $\vec{u} = -\vec{i} + 2\vec{j}$ and $\vec{v} = 3\vec{i} + 5\vec{j}$, the calculation for $\vec{u} + 2\vec{v}$ results in $5\vec{i} + 12\vec{j}$. To find $\vec{w}$ with a magnitude of 26, it is determined that $\vec{w} = 10\vec{i} + 24\vec{j}$. Some participants clarify the calculations and acknowledge a missed negative sign in the initial steps, confirming the correctness of the final result.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
The vectors $\vec{i}$ , $\vec{j}$ are unit vectors
along the x-axis and y-axis respectively.

The vectors $ \vec{u}= –\vec{i} +2\vec{j}$ and $\vec{v} = 3\vec{i} + 5 \vec{j}$ are given.

(a) Find $\vec{u}+ 2\vec{v}$ in terms of $\vec{i}$ and $\vec{j}$ .

$–\vec{i} +2\vec{j} + 2(3\vec{i} + 5 \vec{j}) = 5\vec{i}+12\vec{j}$

A vector $\vec{w}$ has the same direction as $\vec{u} + 2\vec{v} $, and has a magnitude of $26$.

magnitude of $5\vec(i)+12\vec{j}$ is $\sqrt{5^2+12^2}=13$ which is half of $26$

(b) Find $\vec{w}$ in terms of $\vec{i}$and $\vec{j}$ .

so $\vec{w} = 2(5\vec{i}+12\vec{j}) = 10\vec{i}+24{j}$

hope so anyway??
 
Mathematics news on Phys.org
Re: find vector w in terms of i and j

Your work is correct if $$\vec{v}$$ is instead given as:

$$\vec{v}=2\vec{i}+5\vec{j}$$

Otherwise, the problem needs to be reworked.
 
Re: find vector w in terms of i and j

MarkFL said:
Your work is correct if $$\vec{v}$$ is instead given as:

$$\vec{v}=2\vec{i}+5\vec{j}$$

Otherwise, the problem needs to be reworked.

this is what was given
$\displaystyle \vec{v}=3\vec{i}+5\vec{j}$

$\vec{u}+2\vec{v}= –\vec{i}+2\vec{j}+2(3\vec{i}+5\vec{j}) =5\vec{i}+12\vec{j}$
$–\vec{i}+6\vec{i}+2\vec{j}+10\vec{j}=5\vec{i}+12 \vec{j} $

this is a leading $$(-1)\vec{i}$$ which hard to see...
or did I miss something else...:confused:
 
Re: find vector w in terms of i and j

Everything you have written is correct.
 
Re: find vector w in terms of i and j

karush said:
this is what was given
$\displaystyle \vec{v}=3\vec{i}+5\vec{j}$

$\vec{u}+2\vec{v}= –\vec{i}+2\vec{j}+2(3\vec{i}+5\vec{j}) =5\vec{i}+12\vec{j}$
$–\vec{i}+6\vec{i}+2\vec{j}+10\vec{j}=5\vec{i}+12 \vec{j} $

this is a leading $$(-1)\vec{i}$$ which hard to see...
or did I miss something else...:confused:

My apologies...I somehow missed the leading negative there...(Blush)
 
Re: find vector w in terms of i and j

No prob...you are a lot more accurate than I am
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
Replies
2
Views
2K