Find Vol Bound by $x_2 =\frac{y+1}{2}$ & $x_1=y^2$

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Bound
Click For Summary
SUMMARY

The volume bounded by the curves defined by \(x_2 = \frac{y+1}{2}\) and \(x_1 = y^2\) is calculated using the definite integral \(\int_{-\frac{1}{2}}^{1} (-y^2 + \frac{y}{2} + \frac{1}{2}) \,dx\). The evaluation of this integral yields a result of \(\frac{9}{16}\). The calculations involve substituting the limits into the antiderivative and performing arithmetic operations, confirming that \(\frac{9}{16}\) is indeed the correct answer.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with polynomial functions
  • Knowledge of evaluating limits in calculus
  • Basic arithmetic skills for simplifying fractions
NEXT STEPS
  • Study the properties of definite integrals in calculus
  • Learn about the application of integrals in finding volumes of solids
  • Explore polynomial function behavior and graphing techniques
  • Practice arithmetic operations with fractions and mixed numbers
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus, as well as anyone interested in mastering volume calculations using integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find volume bound by $x_2 =\frac{y+1} {2} $ and $x_1=y^2$
$\int_{-{\frac{1}{2}}}^{1} (-{y}^{2 }+\frac{y}{2}+\frac{1}{2}) \,dx$
$
\begin{array}{l}
{{\left[{\frac{{y}^{2}}{2}\mathrm{{+}}\frac{y}{4}\mathrm{{-}}\frac{{y}^{3}}{3}}\right]}_{\mathrm{{-}}{1}{\mathrm{/}}{2}}^{1}}\\
{\left[{\frac{\frac{1}{4}}{2}\mathrm{{-}}\frac{\frac{1}{2}}{4}\mathrm{{+}}\frac{\frac{1}{8}}{3}}\right]\mathrm{{-}}\left[{\frac{1}{4}\mathrm{{+}}\frac{1}{2}\mathrm{{-}}\frac{1}{3}}\right]}\\
{\left[{\frac{3}{\mathrm{48}}\mathrm{{-}}\frac{\mathrm{12}}{\mathrm{48}}\mathrm{{+}}\frac{2}{\mathrm{48}}}\right]\mathrm{{-}}\left[{\frac{\mathrm{12}}{\mathrm{48}}\mathrm{{+}}\frac{\mathrm{24}}
{\mathrm{48}}\mathrm{{-}}\frac{\mathrm{16}}{\mathrm{48}}}\right]}
\end{array}$
$$
\frac{5}{12 }+\frac{7}{48 }=\frac{9}{16}
$$
Thot I would try mathmajic but better to stay here😁
 
Last edited:
Physics news on Phys.org
karush said:
Find volume bound by $x_2 =\frac{y+1} {2} $ and $x_1=y^2$
$\int_{-{\frac{1}{2}}}^{1} (-{y}^{2 }+\frac{y}{2}+\frac{1}{2}) \,dx$
$
\begin{array}{l}
{{\left[{\frac{{y}^{2}}{2}\mathrm{{+}}\frac{y}{4}\mathrm{{-}}\frac{{y}^{3}}{3}}\right]}_{\mathrm{{-}}{1}{\mathrm{/}}{2}}^{1}}\\
{\left[{\frac{\frac{1}{4}}{2}\mathrm{{-}}\frac{\frac{1}{2}}{4}\mathrm{{+}}\frac{\frac{1}{8}}{3}}\right]\mathrm{{-}}\left[{\frac{1}{4}\mathrm{{+}}\frac{1}{2}\mathrm{{-}}\frac{1}{3}}\right]}\\
{\left[{\frac{3}{\mathrm{48}}\mathrm{{-}}\frac{\mathrm{12}}{\mathrm{48}}\mathrm{{+}}\frac{2}{\mathrm{48}}}\right]\mathrm{{-}}\left[{\frac{\mathrm{12}}{\mathrm{48}}\mathrm{{+}}\frac{\mathrm{24}}
{\mathrm{48}}\mathrm{{-}}\frac{\mathrm{16}}{\mathrm{48}}}\right]}
\end{array}$
$$
\frac{5}{12 }+\frac{7}{48 }=\frac{9}{16}
$$
Thot I would try mathmajic but better to stay here😁

9/16 is correct. Well done.
 
It's the arithmetic that kills on these integrals
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
843