Find Volume of Wine Glass on Side with Solids of Revolution

Click For Summary

Discussion Overview

The discussion revolves around calculating the volume of a snifter wine glass when it is placed on its side and filled with liquid. Participants explore the application of solids of revolution to determine the volume of the liquid in this orientation, addressing both the mathematical modeling and the physical implications of the volume measurement.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant states that the volume of the glass when filled to the tip on its side is considered the optimum amount for a shot, questioning the basis for this claim.
  • Participants provide a mathematical model for the top half of the glass using a polynomial equation.
  • There is a discussion on how to calculate the volume of the liquid when the glass is tipped, specifically the region between the glass and the line representing the liquid level.
  • One participant suggests using the internal contour of the glass for volume calculations rather than the external contour.
  • A formula for calculating the volume above a certain height is proposed, involving integration and the area of a circular segment.
  • Clarification is sought regarding the notation "y(x)" used in the volume formula, which is explained as the value of the function corresponding to x.

Areas of Agreement / Disagreement

Participants express varying degrees of understanding and approaches to the problem, with some providing mathematical insights while others question the assumptions made about the volume measurement. No consensus is reached on the optimal volume claim or the method of calculation.

Contextual Notes

Participants do not fully resolve the mathematical steps involved in the volume calculation, and there are assumptions about the glass's shape and the definitions used in the equations that remain unaddressed.

Jipsonburger
Messages
2
Reaction score
0
Apparently when a "snifter" glass is placed on it's side and filled up to the tip, this volume is the optimum amount that should be poured to make a shot.

Hence i have put a glass on an axis and modeled an equation for the top half of the glass...

$$f(x)= -0.00393x^4+0.0843x^3-0.693x^2+2.198x+1.246$$

I know how to find the volume of the whole glass (using solids of revolution) which is 188mL (188cm^3), but i am unable to find a method for working out the volume when its tipped on its side and filled up (i.e) the region between the glass and the line $$g(x)=2.46$$.

So in effect my question is:

"How do i work out the volume of the liquid that can be poured into this glass when it is placed on its side, using solids of revolution?

If anyone could shed some light on the issue it would be greatly appreciated =) Thanks in advance =)
 
Physics news on Phys.org
Jipsonburger said:
Apparently when a "snifter" glass is placed on it's side and filled up to the tip, this volume is the optimum amount that should be poured to make a shot.

Really, on what basis is this an optimum? .. and how would a bar-person know what volume that was?

Jipsonburger said:
Hence i have put a glass on an axis and modeled an equation for the top half of the glass...

$$f(x)= -0.00393x^4+0.0843x^3-0.693x^2+2.198x+1.246$$

I know how to find the volume of the whole glass (using solids of revolution) which is 188mL (188cm^3), but i am unable to find a method for working out the volume when its tipped on its side and filled up (i.e) the region between the glass and the line $$g(x)=2.46$$.

So in effect my question is:

"How do i work out the volume of the liquid that can be poured into this glass when it is placed on its side, using solids of revolution?

If anyone could shed some light on the issue it would be greatly appreciated =) Thanks in advance =)

When finding a volume like this you use the contour of the interior of the glass not the exterior.

CB
 
Jipsonburger said:
Apparently when a "snifter" glass is placed on it's side and filled up to the tip, this volume is the optimum amount that should be poured to make a shot.

Hence i have put a glass on an axis and modeled an equation for the top half of the glass...

$$f(x)= -0.00393x^4+0.0843x^3-0.693x^2+2.198x+1.246$$

I know how to find the volume of the whole glass (using solids of revolution) which is 188mL (188cm^3), but i am unable to find a method for working out the volume when its tipped on its side and filled up (i.e) the region between the glass and the line $$g(x)=2.46$$.

So in effect my question is:

"How do i work out the volume of the liquid that can be poured into this glass when it is placed on its side, using solids of revolution?

If anyone could shed some light on the issue it would be greatly appreciated =) Thanks in advance =)

Let the internal contour be \(y=f(x)\), then the volume above \(y=2.46\) is:

\[V= \int_{x_{min}}^{x_{max}} A(x) dx\]

where \(A(x)\) is the area of a segment of a circle of radius \(r(x)=f(x)\), and semi angle \(\theta(x)=\arccos(2.46/y(x))\)

\[A(x)=\frac{1}{2} (r(x))^2 (2\theta(x)-\sin(2\theta(x)) )\]

CB
 
Last edited:
CaptainBlack said:
Let the internal contour be \(y=f(x)\), then the volume above \(y=2.46\) is:

\[V= \int_{x_{min}}^{x_{max}} A(x) dx\]

where \(A(x)\) is the area of a segment of a circle of radius \(r(x)=f(x)\), and semi angle \(\theta(x)=\arccos(2.46/y(x))\)

\[A(x)=\frac{1}{2} (r(x))^2 (2\theta(x)-\sin(2\theta(x)) )\]

CB

Thanks so much =)

Just 1 more quick question, what is "y(x)" that you refer to?
 
Jipsonburger said:
Thanks so much =)

Just 1 more quick question, what is "y(x)" that you refer to?

The value of y corresponding to x, so y(x)=f(x)

CB
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
6
Views
3K
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
2K
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
11K
Replies
1
Views
2K