MHB Find x and y if x, y are members of real numbers and: (x+i)(3-iy)=1+13i

Click For Summary
To solve for x and y in the equation (x+i)(3-iy)=1+13i, the initial expansion leads to two equations: 3x + y = 1 and -xy + 3 = 13. From the first equation, y can be expressed as y = 1 - 3x. Substituting this into the second equation results in a quadratic equation, which factors to (3x + 5)(x - 2) = 0. The solutions yield the pairs (x, y) = (-5/3, 6) and (2, -5), confirming the calculations.
Gladier
Messages
1
Reaction score
0
Find x and y if x, y are members of real numbers and: (x+i)(3-iy)=1+13i

I first expanded it to give: 3x-yix+3i+y=1+13i
Then I equaled 3x+y=1 and -yx+3=13
But afterwards I do other steps and get the wrong answer.
 
Last edited by a moderator:
Mathematics news on Phys.org
Your approach and posted work are ok.

To continue,

$$3x+y=1\implies y=1-3x$$

$$3-xy=13\implies xy=-10$$

$$x(1-3x)=-10$$

$$(3x+5)(x-2)=0$$

$$(x,y)=\left(-\frac53,6\right),(2,-5)$$

Does that match your results?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K