- #1
- 420
- 0
Find a basis Beta in R^2 such that the beta matrix B of the given linear transformation T is diagonal. The Reflection T about the line R^2 spanned by [1 2], [1 2] is suppose to be verticle.
B=S^-1AS
or
B=[[T(v1)]beta [T(v20]beta]
so i found the reflection matrix to be [4/13 6/13] for the first column and [6/13 4/13] for the second. I'm using e1 and e2 for the v1 and v2. Every time I try solving this I keep getting the same matrix and I don't believe that is right. I think there should be negative somewhere because it is a reflection and I can't figure out what I'm dong wrong. Any help would be greatly appreciated.
B=S^-1AS
or
B=[[T(v1)]beta [T(v20]beta]
so i found the reflection matrix to be [4/13 6/13] for the first column and [6/13 4/13] for the second. I'm using e1 and e2 for the v1 and v2. Every time I try solving this I keep getting the same matrix and I don't believe that is right. I think there should be negative somewhere because it is a reflection and I can't figure out what I'm dong wrong. Any help would be greatly appreciated.