Finding a basis for a Vector Space

Click For Summary
SUMMARY

The discussion centers on finding a basis for a vector space, specifically addressing the standard basis $\{1,x,x^2\}$ and its inadequacy under the defined scalar multiplication. The correct basis identified is $\{0,x,x^2\}$, with the scalar multiplication leading to the conclusion that $a=b=c=0$ when solving $a(0)+b(x)+c(x^2)=1$. The participants highlight the importance of using the defined operations for vector spaces when determining linear independence, noting the distinction from typical exercises encountered in their studies.

PREREQUISITES
  • Understanding of vector spaces and their properties
  • Familiarity with linear independence concepts
  • Knowledge of polynomial vector spaces, specifically $\mathbb{P}_2$
  • Basic skills in algebraic manipulation and solving equations
NEXT STEPS
  • Study the definitions and properties of vector spaces
  • Learn about linear independence in the context of polynomial vector spaces
  • Explore scalar multiplication and addition operations in vector spaces
  • Practice exercises involving different bases and their implications in vector spaces
USEFUL FOR

Students of linear algebra, mathematicians exploring vector space theory, and educators seeking to clarify concepts of basis and linear independence in polynomial contexts.

Dethrone
Messages
716
Reaction score
0
View attachment 4284

4b). How can I find a basis? I was thinking of the standard basis $\{1,x,x^2\}$, but that doesn't work under the scalar multiplication definition in the vector space.

EDIT: I think it is $\{0,x,x^2\}$ and we take $1$ to be the $0$ vector!
$a(0)+b(x)+c(x^2)=1$ implies $a=b=c=0$.
It is strange, because I've done nearly all the questions in the book and I never encountered a question like this one.
 

Attachments

  • 2014 #4.PNG
    2014 #4.PNG
    13.8 KB · Views: 126
Last edited:
Physics news on Phys.org
Rido12 said:
EDIT: I think it is $\{0,x,x^2\}$ and we take $1$ to be the $0$ vector!
$a(0)+b(x)+c(x^2)=1$ implies $a=b=c=0$.
It is strange, because I've done nearly all the questions in the book and I never encountered a question like this one.

Hey Rido!
You've got it. (Nod)
How is it different?
 
Hey ILS :D

Thanks for the reply!

It is different because in my book, vector spaces and linear independence are in different sections. So most of the time, I have only tried $a(1)+b(x)+c(x^2)=0$ where I set it to $0$, not $1$, and I would solve it under regular addition and multiplication.

This time:
$a(0)+b(x)+c(x^2)=1$
$a(0)-a+1+bx-b+1+cx^2-c+1=1$
$-a+bx-b+cx^2-c=0$

$\implies a=0$ (when $x=1$)
$\implies b=0$ (when $x=-1$)
And finally, $c=0$.
 
Rido12 said:
It is different because in my book, vector spaces and linear independence are in different sections. So most of the time, I have only tried $a(1)+b(x)+c(x^2)=0$ where I set it to $0$, not $1$, and I would solve it under regular addition and multiplication.

So it's a good exercise! (Mmm)

It alerts us to the fact that the addition and scalar multiplication defined for the vector space have to be used whenever checking anything.
Btw, to avoid confusion, a better notation for linear independence would be:
$$a \odot (0) \quad\oplus\quad b \odot (x) \quad\oplus\quad c \odot (x^2) \quad=\quad 0_{\mathbb P_2} \quad=\quad 1$$
(Nerd)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K