Finding a conditional probability from joint p.d.f

AI Thread Summary
To find the conditional probability $$\mathbb{P}(2X > Y |1 < 4Z < 3)$$, the equation $$\mathbb{P}(2X>Y, 1<4Z<3)$$ needs to be evaluated alongside the marginal probability distribution of Z. The limits of integration for finding the marginal distribution $$f_{Z}(z)$$ typically range from ##-\infty## to ##+\infty##, but can be narrowed based on the nonzero region of the integrand. It is confirmed that X and Y are independent of Z, allowing simplification of the expression to $$\mathbb{P}(2X > Y)$$. Verifying the equality $$f_{X,Y}(x,y)f_Z(z) = f(x,y,z)$$ can further establish the independence of X, Y, and Z.
Hamiltonian
Messages
296
Reaction score
193
Homework Statement
If the following joint p.d.f. can be considered for the random variables X, Y, and Z:
$$f(x,y,z) = \begin{cases} 2 & for & 0<x<y<1\ \&\ 0<z<1 \\ 0 & otherwise\end{cases}$$

Evaluate ##\mathbb{P}(2X > Y |1 < 4Z < 3).##
Relevant Equations
$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)} {f_{Y}(y)}$$
using the equation mentioned under Relevant Equations I can get, $$\mathbb{P}(2X > Y |1 < 4Z < 3) = \frac{\mathbb{P}(2X>Y, 1<4z<3)}{\mathbb{P}(1<4z<3)}$$ I can find the denominator by finding the marginal probability distribution, ##f_{Z}(z)## and then integrating that with bounds 0 to 1. But I am a little confused as to the limits of integration I need to use to find ##f_{Z}(z)## and then there's still the question of what I need to do to find the numerator.
$$f_{Z}(z) = \int_{?}^{?}\int_{?}^{?} f(x,y,z) dx dy$$

Additionally, I wonder if this approach is completely flawed and whether there is a better way to approach this problem.
 
Physics news on Phys.org
The approach is not flawed, but there is an easier way.
Are X and Y independent of Z?
If so how can we simplify the target expression ##\mathbb{P}(2X > Y |1 < 4Z < 3)##?

Regarding limits for integration, the starting point is ##-\infty## to ##+\infty##. But usually you can narrow that down by identifying the region over which the integrand is nonzero. If the region is rectangular, with sides aligned with coordinate axes, your limits will be simple constants. Otherwise your limits for the inner integral will depend on the values of the integration variable of the outer integral
 
andrewkirk said:
The approach is not flawed, but there is an easier way.
Are X and Y independent of Z?
If so how can we simplify the target expression ##\mathbb{P}(2X > Y |1 < 4Z < 3)##?
X and Y are independent of Z but are dependent on each other. So is ##\mathbb{P}(2X > Y |1 < 4Z < 3) = \mathbb{P}(2X>Y)##
 
Verify the equality ##f_{X,Y}(x,y)f_Z(z) = f(x,y,z)## to determine independence of ##(X,Y)## and ##Z## if necessary.
 
Back
Top