Finding a matrix W such that W^t*AW = D (D is diagonal matrix)

Click For Summary
The discussion revolves around finding a matrix W such that W^t*AW = D, where D is a diagonal matrix, given the matrix A. The eigenvalues of A are determined to be 1 and 0, with corresponding eigenvectors forming a basis for the eigenspaces. There is confusion regarding the diagonalization of A due to its non-invertibility from the zero eigenvalue. A proposed matrix P derived from the eigenspaces does not satisfy the condition W^t*AW = D, leading to further inquiries about the correct approach to diagonalization. The conversation highlights the importance of ensuring eigenvectors form a proper basis and the implications of having a zero eigenvalue on the diagonalization process.
zjohnson19
Messages
4
Reaction score
0

Homework Statement


A = 000
010
101

Find Eigenvalues, its corresponding eigenvectors, and find a matrix W such that W^t*AW = D, where D is a diagnol matrix.(note that W^t represents the transpose of W)

Homework Equations


Eigenvalues, Eigenvectors, diagnolization[/B]

The Attempt at a Solution


Question 1 is to find eigenvalues. Since it is already a lower triangular matrix this was easy and I believe the eigenvalues are 1 and 0. The characteristic equation I got was (0-y)(1-y)(1-y).

Question 2 was to find the corresponding eigenvectors. if y1 = 1, then (A-1I) = -100
000
100

From that you get x1 = 0. x2 and x3 are free. So a basis for the eigenspace is (v1, v2) where
v1 = 0
1
0

v2 = 0
0
1

For y = 0, A -0 is just A. you get x2 = 0 and x1 = -x3 with x3 free. Therefore the corresponding eigenvector is
v = -1
0
1

Correct me if I'm wrong but I believe up to here I have done everything correct.

The final part of the question confuses me quite a bit . "find a matrix W such that W^t*AW = D, where D is a diagnol matrix."

I thought diagnolization is only possible if a matrix is invertible. Since A has 0 as an eigenvalue, it is not invertible. Did I get the eigenvectors wrong or is D not the diagnolization of A?

Edit: I cannot find a way to get the space formatting correct. Does anyone know how?
 
Last edited:
Physics news on Phys.org
zjohnson19 said:

Homework Statement


A = 000
010
101

Find Eigenvalues, its corresponding eigenvectors, and find a matrix W such that W^t*AW = D, where D is a diagnol matrix.

Homework Equations


Eigenvalues, Eigenvectors, diagnolization[/B]

The Attempt at a Solution


Question 1 is to find eigenvalues. Since it is already a lower triangular matrix this was easy and I believe the eigenvalues are 1 and 0. The characteristic equation I got was (0-y)(1-y)(1-y).

Question 2 was to find the corresponding eigenvectors. if y1 = 1, then (A-1I) = -100
000
100

From that you get x1 = 0. x2 and x3 are free. So a basis for the eigenspace is (v1, v2) where
v1 = 0
1
0

v2 = 0
0
0

For y = 0, A -0 is just A. you get x2 = 0 and x1 = -x3 with x3 free. Therefore the corresponding eigenvector is
v = -1
0
1

Correct me if I'm wrong but I believe up to here I have done everything correct.

The final part of the question confuses me quite a bit . "find a matrix W such that W^t*AW = D, where D is a diagnol matrix."

I thought diagnolization is only possible if a matrix is invertible. Since A has 0 as an eigenvalue, it is not invertible. Did I get the eigenvectors wrong or is D not the diagnolization of A?

Edit: I cannot find a way to get the space formatting correct. Does anyone know how?

The zero vector is never considered as an eigenvector, so your v2 is incorrect. Not only that, you want the eigenvectors to form a basis (which is possible in the diagonalizable case), and the zero vector is never part of a basis.
 
My bad, I had that copied down wrong(I edited it now to fix it). I had v2 as (0 0 1), not (0 0 0). So a basis for the eigenspace corresponding to lambda = 0 would be

[0] [ 0]
|1| , | 0|
[0] [ 1]

one eigenvector would be
[0]
|1|
[1]
 
I've tried to diagnolize the matrix and I found an P and A that work(since AP = PD).

I got p from the bases of the eigenspaces.
p =
00-1
10 0
01 1

I chose D to be the eigenvalues in the diagnol positions corresponding with its bases in p
D=
100
010
000

AP=PD so this step should be fine.

I then was hoping this would work for the final answer and I could choose P as the answer. Unfortunately the transpose of P * AP does not equal this diagnol matrix.

Anyone know where to go from here?
 

Attachments

  • IMG_3887.JPG
    IMG_3887.JPG
    20.9 KB · Views: 500
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
9
Views
2K
Replies
8
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
Replies
9
Views
2K