- #1

- 150

- 3

## Homework Statement

Start with the power series representation 1/(1-x) = sum from n=0 to inf. of x^n for abs(x) < 1 to find a power series representation for f(x) and determine the radius of convergence.

f(x)=ln(5+x^2)

## Homework Equations

## The Attempt at a Solution

Okay, so I get

1/(1-q)= sum q^n

Now, the problem lies in the fact that x is to a power of 2.

so if q= (-(x^2)-4) I get 1 / (1-(-(x^2)-4)) but if I want to integrate that, now that x is squared, I don't get the ln.

Can I do it the other way?

integrate first to get:

ln (1-q) = sum q^(n+1) / (n+1) and then replace q? I feel like that shouldn't work.