Finding acceleration from position formula

AI Thread Summary
To find the acceleration of a particle moving along the curve r = k(1+cosθ), it is essential to differentiate the position formula twice with respect to time, not θ. The velocity derived as v = -ksinθ must include the time derivative of θ, leading to a different expression for acceleration. The discussion highlights that the velocity is constant in magnitude but changes direction, emphasizing the need to refer to speed instead. Proper application of the chain rule is crucial for accurate calculations in this context. Understanding these differentiation techniques is key to resolving the problem correctly.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
A particle moves with constant velocity v along the curve r = k(1+cosθ) (a cardioid), where
k is a constant. Find the acceleration of the particle (a), a· rˆ, |a|, and θ˙.
Relevant Equations
a = dV/dt
I am trying to follow the solution to the following problem, both linked in the attachment.

When trying to find the acceleration, a, that should be taking the derivative of r, the position formula twice. When doing so I get v = -ksinθ and a = -kcosθ. The attached work shows v being -(ksinθ)θ' which also leads to them getting a different answer for acceleration. Am i approaching this problem the wrong way?
 

Attachments

  • Screen Shot 2022-01-11 at 2.30.33 PM.png
    Screen Shot 2022-01-11 at 2.30.33 PM.png
    7.3 KB · Views: 124
  • r+costheta.jpeg
    r+costheta.jpeg
    40.5 KB · Views: 124
Physics news on Phys.org
quittingthecult said:
Homework Statement:: A particle moves with constant velocity v along the curve r = k(1+cosθ) (a cardioid), where
k is a constant. Find the acceleration of the particle (a), a· rˆ, |a|, and θ˙.
Relevant Equations:: a = dV/dt

I am trying to follow the solution to the following problem, both linked in the attachment.

When trying to find the acceleration, a, that should be taking the derivative of r, the position formula twice. When doing so I get v = -ksinθ and a = -kcosθ. The attached work shows v being -(ksinθ)θ' which also leads to them getting a different answer for acceleration. Am i approaching this problem the wrong way?
To find the velocity and acceleration you need to differentiate twice with respect to time. You appear to have differentiated wrt ##\theta##. Using the chain rule, you must then multiply by the derivative of that wrt time.
 
  • Like
Likes Charles Link
Maybe a bit pedantic but….

The velocity (a vector) can’t be constant because its direction is constantly changing.

The question and the model answer should refer to the speed (not the velocity) as being constant.
 
  • Like
Likes robphy, sysprog, SammyS and 1 other person
haruspex said:
To find the velocity and acceleration you need to differentiate twice with respect to time. You appear to have differentiated wrt ##\theta##. Using the chain rule, you must then multiply by the derivative of that wrt time.
Since I am differentiating with respect to time, this becomes implicit differentiation?
 
quittingthecult said:
implicit differentiation
Yes, which is just an example of the chain rule.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top