Finding acceleration from position formula

Click For Summary
To find the acceleration of a particle moving along the curve r = k(1+cosθ), it is essential to differentiate the position formula twice with respect to time, not θ. The velocity derived as v = -ksinθ must include the time derivative of θ, leading to a different expression for acceleration. The discussion highlights that the velocity is constant in magnitude but changes direction, emphasizing the need to refer to speed instead. Proper application of the chain rule is crucial for accurate calculations in this context. Understanding these differentiation techniques is key to resolving the problem correctly.
guyvsdcsniper
Messages
264
Reaction score
37
Homework Statement
A particle moves with constant velocity v along the curve r = k(1+cosθ) (a cardioid), where
k is a constant. Find the acceleration of the particle (a), a· rˆ, |a|, and θ˙.
Relevant Equations
a = dV/dt
I am trying to follow the solution to the following problem, both linked in the attachment.

When trying to find the acceleration, a, that should be taking the derivative of r, the position formula twice. When doing so I get v = -ksinθ and a = -kcosθ. The attached work shows v being -(ksinθ)θ' which also leads to them getting a different answer for acceleration. Am i approaching this problem the wrong way?
 

Attachments

  • Screen Shot 2022-01-11 at 2.30.33 PM.png
    Screen Shot 2022-01-11 at 2.30.33 PM.png
    7.3 KB · Views: 130
  • r+costheta.jpeg
    r+costheta.jpeg
    40.5 KB · Views: 128
Physics news on Phys.org
quittingthecult said:
Homework Statement:: A particle moves with constant velocity v along the curve r = k(1+cosθ) (a cardioid), where
k is a constant. Find the acceleration of the particle (a), a· rˆ, |a|, and θ˙.
Relevant Equations:: a = dV/dt

I am trying to follow the solution to the following problem, both linked in the attachment.

When trying to find the acceleration, a, that should be taking the derivative of r, the position formula twice. When doing so I get v = -ksinθ and a = -kcosθ. The attached work shows v being -(ksinθ)θ' which also leads to them getting a different answer for acceleration. Am i approaching this problem the wrong way?
To find the velocity and acceleration you need to differentiate twice with respect to time. You appear to have differentiated wrt ##\theta##. Using the chain rule, you must then multiply by the derivative of that wrt time.
 
  • Like
Likes Charles Link
Maybe a bit pedantic but….

The velocity (a vector) can’t be constant because its direction is constantly changing.

The question and the model answer should refer to the speed (not the velocity) as being constant.
 
  • Like
Likes robphy, sysprog, SammyS and 1 other person
haruspex said:
To find the velocity and acceleration you need to differentiate twice with respect to time. You appear to have differentiated wrt ##\theta##. Using the chain rule, you must then multiply by the derivative of that wrt time.
Since I am differentiating with respect to time, this becomes implicit differentiation?
 
quittingthecult said:
implicit differentiation
Yes, which is just an example of the chain rule.
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
13
Views
5K
  • · Replies 5 ·
Replies
5
Views
822
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K