Hi,(adsbygoogle = window.adsbygoogle || []).push({});

I will thank If somebody help me solving this problem.

Consider a random variable [itex] k_1 [/itex] with the given pmf as:

[itex]Pr[k_1=l]=\sum_{l_1+2l_2=l} \frac{N!}{(N-l_1-l_2)!l_1!l_2!}p_1^{l_1} p_2^{l_2} (1-(p_1+p_2))^{N-l_1-l_2}[/itex]

where [itex]l_1,l_2 \in [0,1,...,l] [/itex].

but we don't have [itex]p_1[/itex] and [itex]p_2[/itex] separately and I know just the value of [itex]p_1+p_2[/itex].

I want to find at least a good and tight upper bound for the above pmf.

For example; we can use the inequality of [itex] p_1^{l_1} p_2^{l_2} \leq \frac{l_1!l_2!}{(l_1+l_2)!}(p_1+p_2)^{l_1+l_2} [/itex], but it is not that much tight.

Can everybody help me?

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Finding an upper bound for a probability

Loading...

Similar Threads - Finding upper bound | Date |
---|---|

I Confusion over using integration to find probability | Jun 27, 2017 |

I How To Find 68% Confidence Interval After Running MCMC | May 29, 2017 |

I Finding the average time with given probability | Apr 21, 2017 |

I How do I find the standardized coefficients? | Apr 3, 2017 |

Find a upper bound | May 16, 2009 |

**Physics Forums - The Fusion of Science and Community**