Finding analyticity of a complex function involving ln(iz)

Click For Summary
The function ln, specifically its principal value, is analytical in the complex plane except for the negative real axis, denoted as region D. The function f(z) = ln(iz) - iπ/2 has its domain of analyticity derived from D through a rotation due to the argument of iz. To differentiate this function, the chain rule applies, where the derivative is given by d/dz ln(h(z)) = (1/h(z)) * h'(z). This approach aids in understanding the analyticity and differentiation of complex functions. The discussion highlights the importance of recognizing the regions of analyticity in complex analysis.
tixi
Messages
4
Reaction score
3
Homework Statement
The function ln (principal value of ln) is known to be analytical in complex plane with removed negative real axis. What is the largest region in which f(z)=ln(iz)-i pi/2 is analytical? Evaluate f′(z).
Relevant Equations
Principal value of the logarithm: ln(z) = ln(r) + iArg(z)
Chain rule for complex functions
Inverse functions differentiation rule
Hey everyone! I got stuck with one of my homework questions. I don't 100% understand the question, let alone how I should get started with the problem.

The picture shows the whole problem, but I think I managed doing the a and b parts, just got stuck with c. How do I find the largest region in which f(z) is analytical and how do I get started trying to differentiate it? Do the differentiation rules for the real ln translate to the complex one?

Thanks in advance <3

1632500082059.png
 
Physics news on Phys.org
Start here: The function ln (principal value of ln) is known to be analytical in complex plane with removed negative real axis, let this region be denoted by ##D##.
The function ##f(z)=\bar{\ln} (iz)-i\tfrac{\pi}{2}## has a domain of analyticity obtained from ##D## by a rotation (this rotation is induced by the argument ##iz##). Think you can figure the rest of that out?
My complex is rusty, but if I recall correctly ##\tfrac{d}{dz}\bar{\ln }(h(z))=\tfrac{1}{h(z)}\cdot h^\prime (z)## by the chain rule. That should get you going!
 
Thank you so much! I never got a notification that my thread was answered, but this still helped! The exercise was explained eventually but it was very abstract and they just gave a very simple answer, so the motivation you provided was still helpful! Thanks :smile:
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...