MHB Finding Angle ACB in Triangle ABC

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Angle Triangle
Click For Summary
In triangle ABC, with angle ABC measuring 45 degrees and point D on line segment BC such that 2BD equals CD and angle DAB is 15 degrees, the goal is to find angle ACB. A point M is identified between A and D where angle MBD equals 30 degrees, leading to the conclusion that AD equals the square root of 3 plus 1. The relationship between angles results in angle CMD being 90 degrees and angle MCA being 45 degrees. Ultimately, angle ACB is determined to be 75 degrees, confirmed by multiple participants in the discussion.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC , \angle ABC=45^o,\,\, point \,\, D\,\, on \,\, \,\overline{BC} $

$and,\,\, 2\overline{BD}=\overline{CD},\,\, \angle DAB=15^o$

$find :\,\, \angle ACB=?$
 
Mathematics news on Phys.org
Albert said:
$\triangle ABC , \angle ABC=45^o,\,\, point \,\, D\,\, on \,\, \,\overline{BC} $

$and,\,\, 2\overline{BD}=\overline{CD},\,\, \angle DAB=15^o$

$find :\,\, \angle ACB=?$
Find a point $M$ between $A$ and $D$ such that $\angle MBD=30$. Note that $MD=DM$ and $AM=MB$. Say $BD=1$. The above leads to $AD=\sqrt 3 + 1$. Further note that $\angle CMD=90$ and hence $\angle MCA=45$. Consequently $\angle ACB=75$.
 
caffeinemachine said:
Find a point $M$ between $A$ and $D$ such that $\angle MBD=30$. Note that $MD=DM$ and $AM=MB$. Say $BD=1$. The above leads to $AD=\sqrt 3 + 1$. Further note that $\angle CMD=90$ and hence $\angle MCA=45$. Consequently $\angle ACB=75$.
caffeinemachine :very good solution :cool:
 
Albert said:
caffeinemachine :very good solution :cool:
Thanks. :) If you have a different one then please post it.
 

Attachments

  • Angle ACB.jpg
    Angle ACB.jpg
    16.7 KB · Views: 104
Albert said:
https://www.physicsforums.com/attachments/1209
from the diagram it is easy to see that :
$\angle ACB =30^o +45^o =75^o$
Awesome!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
14
Views
4K