MHB Finding diameter of a sphere, have density and mass

polskon
Messages
1
Reaction score
0
A balloon is made from material that has a density of 0.310 kg/m2. If the balloon has a mass of 2756 kg and if it is assumed that the balloon is a perfect sphere, what is the diameter of the balloon? Keep the proper number of significant digits.

Mass = Density x Volume

2756kg = 0.310kg/m^2 x Volume

2756kg / 0.310 kg/2 = Volume

Volume = 8890.322581 m^3

8890.322581 m^3 = 4/3(pi)r^3

3(sq)8890.322581 m^3 / (4/3(pi)) = r

r = 12.85117892 m
D = 25.70235784 m

Diameter to 3 significant digits = 25.7 m

Answer is wrong, what is the problem with my answer?
 
Last edited:
Mathematics news on Phys.org
polskon said:
A balloon is made from material that has a density of 0.310 kg/m2. If the balloon has a mass of 2756 kg and if it is assumed that the balloon is a perfect sphere, what is the diameter of the balloon? Keep the proper number of significant digits.

Mass = Density x Volume

2756kg = 0.310kg/m^2 x Volume

2756kg / 0.310 kg/2 = Volume

Volume = 8890.322581 m^3

8890.322581 m^3 = 4/3(pi)r^3

3(sq)8890.322581 m^3 / (4/3(pi)) = r

r = 12.85117892 m
D = 25.70235784 m

Diameter to 3 significant digits = 25.7 m

Answer is wrong, what is the problem with my answer?

1. I assume that the text of the question is correct. Then the balloon is hollow and not solid! The densitiy refers to the envelope of the balloon.

Let A denotes the surface area of the balloon. Then

$ A \cdot 0.310\ \tfrac{kg}{m^2} = 2756\ kg $

That means $ a = 8890.323\ m^2 $

2. The surface of a sphere is calculated by:

$ A = 4 \cdot \pi \cdot r^2~\implies~r=\sqrt{\frac{A}{4 \pi}} $

3. I've got $ r \approx 26.598 \ m $

https://www.physicsforums.com/threa...meter-of-a-sphere-using-a-screw-gauge.991087/
 
Last edited by a moderator:
Hello, polskon!

I agree with earboth . . .

A balloon is made from material that has a density of 0.310 kg/m2.
If the balloon has a mass of 2756 kg and if it is assumed that the balloon is a perfect sphere,
what is the diameter of the balloon?
Keep the proper number of significant digits.
Note that the density is given as 0.310 kilograms per square meter.
We are dealing with the surface area of the spherical balloon, not its volume.
. . (And the thickness of the balloon is considered negligible.)

The area of a sphere is: .A = 4πr2

Mass = Density x Area

. . 2756 .= .0.31 x A . . → . . A .= .2756/0.31

Then: .4πr2 .= .2756/0.31 . . → . . r2 .= .2756/1.24π .= .707.4693922

. . . . . r .= .26.59829670 Therefore: .Diameter .≈ .53.20 m
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top