Confusion on product rule for mass of differential volume element

  • #1
TRB8985
74
15
Homework Statement
Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface. Model a spherically symmetric planet, with the same radius as earth, as having a density that decreases linearly with distance from the center. Let the density be 15.0E3 kg/m³ at the center and 2.0E3 kg/m³ at the surface. What is the acceleration due to gravity at the surface of this planet?
Relevant Equations
ρ = M/V ; g = GM/R²
Good evening,

I'm running into some trouble with this problem, and I have a hint as to why, but I'm not completely sure. Please see the steps below for context.
I've been able to set up the proper equation representing the density as a function of distance from the center which looks like this:
$$ \rho(r) = \rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r $$In order to calculate the acceleration due to gravity at the surface, I know that the mass of this planet is required. My plan was to start from the density equation (with the variables being functions of radial distance from the center): $$ \rho(r) = \frac {m(r)}{V(r)} $$Then multiply both sides by the volume as a function of r: $$ \rho(r) \cdot V(r) = m(r) $$Followed by taking a derivative of both sides with respect to r: $$ \frac {d}{dr} (\rho(r) \cdot V(r)) = \frac {d}{dr}(m(r)) $$This leads to:
$$ \frac {d\rho(r)}{dr} \cdot V(r) + \rho(r) \cdot \frac {dV(r)}{dr} = \frac {dm(r)}{dr}$$Normally in the case of constant density, we would trash the first term on the LHS and move forward with the rest. However, since I have the function for the density in terms of r, I figured keeping this term would be necessary.

My next line looked like this: $$ \frac {d}{dr}(\rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r) \cdot (\frac {4}{3}\pi r^3) + (\rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r) \cdot \frac {d}{dr} (\frac {4}{3} \pi r^3) = \frac {dm(r)}{dr} $$ Which becomes: $$ (- \frac {\rho_{center} - \rho_{surface}} {R_{earth}}) \cdot (\frac {4}{3}\pi r^3) + (\rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r) \cdot ( 4\pi r^2) = \frac {dm(r)}{dr} $$ At this point, I multiplied both sides by dr, then integrated r from 0 to R_earth and the mass from 0 to the total mass of the planet, M: $$ \int_{r=0}^{r=R_{earth}} [\frac {4}{3}\pi r^3(\frac {\rho_{surface} - \rho_{center}} {R_{earth}}) + 4\pi r^2(\rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r)]dr = \int_{m=0}^{m=M} dm(r) $$After integration and a long series of algebra, I ended up with this: $$ M = \frac {4}{3} \pi \rho_{surface} R_{earth}^3 \approx 2.18 \cdot 10^{24} kg $$ Unfortunately, this result is a factor of roughly 2.6 times smaller than the correct value: $$ M_{correct} \approx 5.71 \cdot 10^{24} kg $$ If I go back to the beginning and use ##\rho(r)dV(r) = dm(r)## instead, everything works out beautifully with no trouble. My question is... why?

In problems similar to this with constant density, it was abundantly clear that ##d\rho V## was zero because the derivative of a constant density is zero. But here, the derivative of ##\rho## is non-zero. So... aren't we obligated to include it?
 
Physics news on Phys.org
  • #2
TRB8985 said:
Homework Statement: Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface. Model a spherically symmetric planet, with the same radius as earth, as having a density that decreases linearly with distance from the center. Let the density be 15.0E3 kg/m³ at the center and 2.0E3 kg/m³ at the surface. What is the acceleration due to gravity at the surface of this planet?
Relevant Equations: ρ = M/V ; g = GM/R²

Good evening,

I'm running into some trouble with this problem, and I have a hint as to why, but I'm not completely sure. Please see the steps below for context.
I've been able to set up the proper equation representing the density as a function of distance from the center which looks like this:
$$ \rho(r) = \rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r $$In order to calculate the acceleration due to gravity at the surface, I know that the mass of this planet is required. My plan was to start from the density equation (with the variables being functions of radial distance from the center): $$ \rho(r) = \frac {m(r)}{V(r)} $$Then multiply both sides by the volume as a function of r: $$ \rho(r) \cdot V(r) = m(r) $$Followed by taking a derivative of both sides with respect to r: $$ \frac {d}{dr} (\rho(r) \cdot V(r)) = \frac {d}{dr}(m(r)) $$This leads to:
$$ \frac {d\rho(r)}{dr} \cdot V(r) + \rho(r) \cdot \frac {dV(r)}{dr} = \frac {dm(r)}{dr}$$Normally in the case of constant density, we would trash the first term on the LHS and move forward with the rest. However, since I have the function for the density in terms of r, I figured keeping this term would be necessary.

My next line looked like this: $$ \frac {d}{dr}(\rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r) \cdot (\frac {4}{3}\pi r^3) + (\rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r) \cdot \frac {d}{dr} (\frac {4}{3} \pi r^3) = \frac {dm(r)}{dr} $$ Which becomes: $$ (- \frac {\rho_{center} - \rho_{surface}} {R_{earth}}) \cdot (\frac {4}{3}\pi r^3) + (\rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r) \cdot ( 4\pi r^2) = \frac {dm(r)}{dr} $$ At this point, I multiplied both sides by dr, then integrated r from 0 to R_earth and the mass from 0 to the total mass of the planet, M: $$ \int_{r=0}^{r=R_{earth}} [\frac {4}{3}\pi r^3(\frac {\rho_{surface} - \rho_{center}} {R_{earth}}) + 4\pi r^2(\rho_{center} - \frac {\rho_{center} - \rho_{surface}} {R_{earth}} \cdot r)]dr = \int_{m=0}^{m=M} dm(r) $$After integration and a long series of algebra, I ended up with this: $$ M = \frac {4}{3} \pi \rho_{surface} R_{earth}^3 \approx 2.18 \cdot 10^{24} kg $$ Unfortunately, this result is a factor of roughly 2.6 times smaller than the correct value: $$ M_{correct} \approx 5.71 \cdot 10^{24} kg $$ If I go back to the beginning and use ##\rho(r)dV(r) = dm(r)## instead, everything works out beautifully with no trouble. My question is... why?

In problems similar to this with constant density, it was abundantly clear that ##d\rho V## was zero because the derivative of a constant density is zero. But here, the derivative of ##\rho## is non-zero. So... aren't we obligated to include it?
The mass doesn't equal ##\rho V##, it equals the ## \int \rho ~dV ##. When density is constant ##\rho## comes outside of the integral to yield the formula ## \rho V##. So basically, you started with a false relationship for the mass, and it's still false after differentiation.
 
  • #3
In $$\rho(r) = \frac {m(r)}{V(r)}$$ on LHS you have a density at radius ##r## while on the RHS you have an average density of a ball of radius ##r##.
 
  • #4
Ahh, now I see what's meant by starting with a false relationship! I'd totally agree, that's not right at all.

So really, it sounds like I should be doing this instead: $$ \rho(r) = \frac {dm(r)}{dV(r)} $$ .. and not even worry about a ##d \rho \cdot V## appearing at all.
 
  • Like
Likes erobz
  • #5
I suggest you look for the integral you need to evaluate: using the law of gravitation to give the surface gravity for a spherically symmetric object.

Hint: Newton's shell theorem.
 
Last edited:

1. What is the product rule for mass of a differential volume element?

The product rule for mass of a differential volume element is a mathematical formula used to calculate the mass of a small, infinitesimal volume element. It is expressed as dM = ρdV, where dM is the mass of the element, ρ is the density, and dV is the volume of the element.

2. Why is there confusion surrounding the product rule for mass of a differential volume element?

There is confusion surrounding this topic because it involves complex mathematical concepts and can be difficult to understand at first. Additionally, there are multiple variations of the product rule that can be used, leading to further confusion.

3. How is the product rule for mass of a differential volume element used in scientific research?

This product rule is commonly used in fields such as physics, chemistry, and engineering to calculate the mass of small objects or substances. It is particularly useful in situations where the density of the object or substance is not uniform.

4. What are some common mistakes made when applying the product rule for mass of a differential volume element?

Some common mistakes include using the wrong formula or formula variation, misinterpreting the meaning of the variables, and not properly accounting for units of measurement. It is important to carefully follow the steps of the product rule and double check all calculations to avoid these errors.

5. How can I improve my understanding of the product rule for mass of a differential volume element?

To improve your understanding, it is recommended to practice using the product rule with different examples and to seek help from a teacher or tutor if needed. It may also be helpful to review basic mathematical concepts such as differentiation and integration, which are used in the product rule formula.

Similar threads

  • Introductory Physics Homework Help
Replies
28
Views
320
  • Introductory Physics Homework Help
Replies
5
Views
749
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
5
Views
171
  • Introductory Physics Homework Help
Replies
17
Views
403
  • Introductory Physics Homework Help
Replies
5
Views
475
  • Introductory Physics Homework Help
5
Replies
170
Views
4K
  • Introductory Physics Homework Help
2
Replies
63
Views
2K
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
12
Views
543
Back
Top