1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Finding distance and angle of crash between plane and rocket

  1. Oct 20, 2008 #1
    1. The problem statement, all variables and given/known data
    In a military test, a 575 unmanned spy plane is traveling north at an altitude of 2700 and a speed of 450 . It is intercepted by a 1280 rocket traveling east at 725 .

    If the rocket and the spy plane become enmeshed in a tangled mess, where, relative to the point of impact, do they hit the ground? Give the direction as an angle east of north.

    2. Relevant equations
    F = ma
    p = sqrt((m_1v_1)^2+(m_2v_2)^2)
    vinitial = p/sum of m
    sf = si + vi*t +1/2a*t^2

    3. The attempt at a solution
    I found Vinital by doing v = p/m, and got 519.352 m/s.

    then i plugged that value into yf = yi + vi*t + 1/2a*t^2, and using yf = -2700.

    then i used the quadratic formula to solve for t, and using the negative root (because of logistics) and ended up with t = 4.966 seconds.
    then plugged that into xf = xi + vi*t, and ended up with 2.58 km.
    the answer should be 12.2 km. so, i'm not sure what I am doing incorrectly.
  2. jcsd
  3. Oct 20, 2008 #2


    User Avatar
    Homework Helper

    There is no quadratic. There is merely the time for it to fall from 2700 m

    2700 = 1/2*(9.8)*t2

    It's this time times your horizontal velocity that determines how far away.
  4. Oct 20, 2008 #3
    Okay, I understand that in doing this, you get the 12.2 km, but isn't the equation:
    yfinal = yinital + vinitial*t + 1/2*a*t^2?
    so why cut off part of the equation?

    thanks for the help
  5. Oct 20, 2008 #4


    User Avatar
    Homework Helper

    Strictly speaking the the plane and missile are in a horizontal x,y plane. Whatever velocity they have is not in the z-axis (up/down). Since there are no components of velocity from the crash in the z direction your initial z-velocity is 0, but it is the only component subject to gravity.

    Hence the equation devolves into the simple z = 1/2*g*t2
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Finding distance and angle of crash between plane and rocket