Finding eigenvalues and eigenvectors given sub-matrices

Click For Summary

Homework Help Overview

The discussion revolves around finding eigenvalues and eigenvectors related to sub-matrices, focusing on the properties of eigenvectors when scaled by a real number.

Discussion Character

  • Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the implications of scaling eigenvectors by a scalar and question how this relates to the definitions of eigenvalues and eigenvectors.

Discussion Status

Several participants have provided insights into the relationship between eigenvectors and their scalar multiples, with some clarifying definitions and others rephrasing statements to align with formal definitions. There appears to be a productive exchange of ideas without explicit consensus on a single interpretation.

Contextual Notes

Participants are considering specific conditions under which the properties of eigenvalues and eigenvectors hold, particularly in relation to the parameter 'a' in the context of the problem.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this,
1685494468803.png

The solution is,
1685494576554.png

1685494595484.png

However, does someone please know what allows them to express the eigenvector for each of the sub-matrix in terms of t?

Many thanks!
 
Physics news on Phys.org
From the definition a multiple of any eigenvector is also trivially an eigenvector. So who did this?
 
  • Like
Likes   Reactions: member 731016
Any matrix operator is linear. So ##A (tv)= t A v ## for any vector, ##v##.
Now use that in your case with the eigenvector and eigenvalue.
 
Last edited:
  • Like
Likes   Reactions: member 731016
You need to take into account that both conditions hold. If ##a\not = -1##, then there are two eigenvalues and the corresponding eigenvectors are multiples of the two given vectors. If ##a=-1##, then there is only one eigenvalue and all vectors are eigenvectors.
 
  • Like
Likes   Reactions: member 731016
Thank you for your replies @hutchphd, @FactChecker and @martinbn !

So I am coming to think of it like this considering the most general case I could think of:

##A\vec v = \lambda\vec v##
##At\vec v = \lambda t\vec v## multiply both sides by a scalar ##t## which is a member of the reals
Therefore, the definition of eigenvector and eigenvalue, ##t\vec v## is an eigenvectors for ##\lambda## and ##\lambda## is the eigenvalue for A.

Is that please correct?

Many thanks!
 
ChiralSuperfields said:
##A\vec v = \lambda\vec v##
##At\vec v = \lambda t\vec v## multiply both sides by a scalar ##t## which is a member of the reals
Therefore, the definition of eigenvector and eigenvalue, ##t\vec v## is an eigenvectors for ##\lambda## and ##\lambda## is the eigenvalue for A.

Is that please correct?
Yes, but it would be better if you rephrased your statement to more clearly match the definition of an eigenvector and eigenvalue:
Suppose ##\lambda## and ##\vec v## are eigenvalue and eigenvector of ##A##, respectively. For any ##t \in \mathbb{R}##, where ##t \ne 0##, ##A( \vec {tv}) = t A\vec v = t \lambda \vec v = \lambda \vec {tv}##. So ##\vec {tv}## is also an eigenvector of ##A## with the eigenvalue ##\lambda##.
 
  • Like
  • Informative
Likes   Reactions: hutchphd and member 731016
FactChecker said:
Yes, but it would be better if you rephrased your statement to more clearly match the definition of an eigenvector and eigenvalue:
Suppose ##\lambda## and ##\vec v## are eigenvalue and eigenvector of ##A##, respectively. For any ##t \in \mathbb{R}##, where ##t \ne 0##, ##A( \vec {tv}) = t A\vec v = t \lambda \vec v = \lambda \vec {tv}##. So ##\vec {tv}## is also an eigenvector of ##A## with the eigenvalue ##\lambda##.
Thank you for your help @FactChecker!
 
ChiralSuperfields said:
Thank you for your help @FactChecker!
Actually, I realize that your statement did match the definitions of eigenvector and eigenvalue, but I think that I have rephrased it more as a step-by-step proof.
 
  • Like
Likes   Reactions: member 731016
FactChecker said:
Actually, I realize that your statement did match the definitions of eigenvector and eigenvalue, but I think that I have rephrased it more as a step-by-step proof.
Thank you for your reply @FactChecker! Yeah I only just realized the definition of eigenvector is for a value of ##\lambda## not the matrix A too!
 
  • #10
ChiralSuperfields said:
Thank you for your reply @FactChecker! Yeah I only just realized the definition of eigenvector is for a value of ##\lambda## not the matrix A too!
It's for the combination of the matrix, ##A##, and the eigenvalue ##\lambda##
 
  • Like
Likes   Reactions: member 731016
  • #11
FactChecker said:
It's for the combination of the matrix, ##A##, and the eigenvalue ##\lambda##
Oh, thank you for you letting me know @FactChecker !
 

Similar threads

Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K