Finding Electric Potential Gradient in 3D FEM Mesh

AI Thread Summary
The discussion focuses on calculating the electric potential gradient (∇∅) in a 3D finite element mesh to derive electric current density (i). It highlights that while the gradient can be computed using element shape functions, the results may vary at nodes where multiple elements converge. Averaging methods, such as volume-weighted averages, are suggested to address these discrepancies. The conversation also notes that the finite element approximation for ∇∅ can be discontinuous across element boundaries, which may affect the solution's accuracy depending on its intended use. A more advanced approach to eliminate discontinuities involves formulating elements with nodal gradient variables, though this is less commonly implemented in practice.
Stacky
Messages
8
Reaction score
0
Hello,
The value of electric potential(∅) is known at every node in a 3d finite element mesh. The relation between electric current density(i) and electric potential(∅) is i=k.∇∅, I am writing a code in c, I want to know how to find the gradient of electric potential(∇∅) at every node so as to get current density(i). Please help.
 
Engineering news on Phys.org
If we subscript the nodes using i,j,k then the bilinear approximation would be,

J_x = \frac{\sigma}{2 \Delta} \left[ V_{(i-1),j,k} - V_{(i+1),j,k} \right]

and similarly for the y and z components.
 
The OP said a finite element mesh. The previous answer looks more appropriate for a regular finite differnce mesh, not an FE mesh with arbitrary geometry.

You can calculate the gradient at each node of each element using the element shape functions. (This will be similar, but simpler, than calculating strains from displacements in a structural FE program).

The problem is that the only output that is consistent with the FE method is gradient averaged over the volume of each element. When several elements meet at a node, you will get a different gradient value at the node for each of the elements.

If you just want to plot the data you can do something fairly simple, for example average of the different nodal values (possibly weighted by the volume of the elements). Or you can use the difference between the element values at each node as a measure of the accuracy of the solution.

If you want to do some mathematical post processing using the gradients, it would be better to do it based on the value within the volume of each element, rather than some more or less arbitrary nodal averaging method.
 
Ok, it looks like I was over-simplifying it by assuming it was a rectangular grid.

BTW Stacky. The electric field is E = - \nabla \phi, so it should be J = - \sigma (\nabla \phi)
 
Method suggested by uart is correct, but it suits a regular structured rectangular mesh. Because I am dealing with unstructured mesh, I would prefer to use the method proposed by AlphaZero. Thanks both for their inputs.
Neverthless in strict sense ∇∅ is an elemental solution and we need to use some averaging method to calculate its value at nodes.
 
Stacky said:
Neverthless in strict sense ∇∅ is an elemental solution and we need to use some averaging method to calculate its value at nodes.

I would rephrase that as "the FE approximation for ∇∅ is discontinuous across the element boundaries". Whether you "need" to get rid of the discontinuities depends what you want to use the solution for.

If you really don't want discontinuities, you could formulate an element with a different variational principle so the gradients are nodal variables. That has been done for structural analysis (but few people actually use those element formulations). I don't have any hands-on experiemnce of FE methods in electromagnetism and I don't know what the state of the art is in that field.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top