MHB Finding $f(84)$ with the Defined Function $f$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
SUMMARY

The function \( f \) is defined for integers with two cases: \( f(n) = n - 3 \) for \( n \geq 1000 \) and \( f(n) = f(f(n + 5)) \) for \( n < 1000 \). To find \( f(84) \), we apply the recursive definition, which requires evaluating \( f \) multiple times until reaching a base case. The correct interpretation of the function is crucial, as a typo in the inequality led to confusion. Ultimately, the correct evaluation of \( f(84) \) involves understanding the recursive nature of the function.

PREREQUISITES
  • Understanding of recursive functions
  • Familiarity with integer operations
  • Basic knowledge of mathematical notation
  • Ability to analyze function definitions
NEXT STEPS
  • Study recursive function evaluation techniques
  • Learn about mathematical induction for function proofs
  • Explore the implications of function definitions on integer sets
  • Investigate common pitfalls in mathematical notation and definitions
USEFUL FOR

Mathematicians, computer scientists, and students studying recursion and function theory will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The function $f$ is defined on the set of integers and satisfies

\[ f(n)=\begin{cases}
n-3, & \text{if} \,\,n\geq 1000 \\
f(f(n+5)), & \text{if}\,\, n< 1000
\end{cases}
\]

Find $f(84)$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
The function $f$ is defined on the set of integers and satisfies

\[ f(n)=\begin{cases}
n-3, & \text{if} \,\,n\leq 1000 \\
f(f(n+5)), & \text{if}\,\, n< 1000
\end{cases}
\]

Find $f(84)$.

I think 1st condition should be $>=$
 
Ah, thanks to kaliprasad for pointing it out! Sorry all! I made a blunder, I think for those who know me well, you can tell this wasn't the first time I made a typo in my posting, hehehe...but, I apologize. This shouldn't happen in the first place, I should have checked both before and after posting too!
 
anemone said:
Ah, thanks to kaliprasad for pointing it out! Sorry all! I made a blunder, I think for those who know me well, you can tell this wasn't the first time I made a typo in my posting, hehehe...but, I apologize. This shouldn't happen in the first place, I should have checked both before and after posting too!

No one is perfect, and only those who do things put themselves at the risk of making a mistake. When I see that someone contributing to a site has possibly made a typo or other error in a post, I tend to send them a PM so they can correct it with minimal embarrassment. :)
 
As for the value of f(n) for n less than 1000 can be computed if we now for n+5 so let us compute f(n) for n = 1004 to 995 downwards
$f(1004) = 1004- 3 = 1001$
$f(1003) = 1003 - 3 = 1000$
$f(1002) = 1002-3 = 999$
$f(1001) = 1001 - 3 = 998$
$f(1000) = 1000-3 = 997$
$f(999) = f(f(1004)) = f(1001) = 998$
$f(998) = f(f(1003)) = f(1000) = 997$
$f(997) = f(f(1002)) = f(999) = 998$
$f(996) = f(f(1001)) = f(998) = 997$
$f(995) = f(f(1000)) = f(997) = 998$

Now as 84 + 915 = 999 or 84 + 183 * 5 = 999 So let us evaluate f(999-5k) for some k

we have $f(994) = f(f(999)) = f(998) = 997$
$f(989) = f(f(994)) = f(997) = 998$
$f(984) = f(f(989)) = f(998) = 997$
from the above we see that $f(999-kn)$ is $998$ if k is even and is $997$ if k is odd

as $999- 84 = 183 * 5$ so we get $f(84) = 997$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 28 ·
Replies
28
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K