Finding First Four Terms of xcotx Series

  • Thread starter Thread starter JG89
  • Start date Start date
  • Tags Tags
    Series Terms
Click For Summary
SUMMARY

The forum discussion focuses on finding the first four non-vanishing terms of the Taylor series for the function xcotx around x = 0. Participants utilize the Taylor series expansions for sinx and cosx to derive the series for cotx, leading to the expression for xcotx. The final result, after careful manipulation and truncation of terms, yields the first four non-vanishing terms as 1, -x^2/3, -x^4/45, and -x^6/180. The discussion emphasizes the importance of correctly applying series expansions and truncating appropriately to achieve accurate results.

PREREQUISITES
  • Understanding of Taylor series expansions for trigonometric functions, specifically sinx and cosx.
  • Familiarity with the cotangent function and its relationship to sine and cosine.
  • Knowledge of series manipulation techniques, including truncation and term collection.
  • Basic calculus concepts, particularly limits and convergence of series.
NEXT STEPS
  • Study the derivation of Taylor series for various functions, focusing on trigonometric identities.
  • Learn about the convergence criteria for Taylor series and their implications in approximation.
  • Explore advanced series manipulation techniques, including geometric series expansions.
  • Practice deriving Taylor series for other functions to solidify understanding of the concepts discussed.
USEFUL FOR

Students studying calculus, mathematicians interested in series expansions, and educators teaching Taylor series concepts will benefit from this discussion.

JG89
Messages
724
Reaction score
1

Homework Statement




Find the first four non-vanishing terms of the Taylor series for xcotx in the neighborhood of x = 0.


Homework Equations





The Attempt at a Solution



LaTex isn't working for me so hopefully this doesn't look too messy.

cotx = cosx/sinx. I know what the Taylor series is for cosx and sinx about x = 0.

cosx = 1 - x^2/2! + x^4/4! + ..

sinx = x - x^3/3! + x^5/5! +...

so cotx = (1 - x^2/2! + x^4/4! + ..) / (x - x^3/3! + x^5/5! +...)

and so xcotx = (x - x^3/2! + x^5/4! + ..) / (x - x^3/3! + x^5/5! +...)

And so the first non-vanishing terms are:

1: x / (x - x^3/3! + x^5/5! +...)

2: -x^3/2! / (x - x^3/3! + x^5/5! +...)

and so on?

Is this right?
 
Physics news on Phys.org
No, those aren't 'terms', those are still quotients. First take your expansion for x*cot(x) and cancel an x in the numerator and the denominator. Now the denominator has the form 1-C, where C is an infinite series. Use 1/(1-C)=1+C+C^2+C^3+... To expand the infinite series, if you look at the form of your product it's a pretty good guess that the first four nonvanishing terms are going to be multiples of 1, x^2, x^4 and x^6. So you only need to keep terms of those powers.
 
I canceled out an x in the numerator with an x in the denominator and so now I have

xcotx = (1 - x^2/2! + x^4/4! - x^6/6! + ...) / (1 - x^2/3! + x^4/5! - x^6/7! + ...)

The infinite series in denominator resembles the infinite series 1 - x^2 + x^4 - x^6 + ... = 1/(1+x^2). I just can't figure out how to get rid of the coefficients 1/3!, 1/5! and so on
 
You don't get rid of them. You use them to calculate the first four terms. Just truncate the expansions until you've accounted for all the the terms with exponent less than or equal to six.
 
Do you mean like this:

So for example, since I have:

xcotx = (1 - x^2/2! + x^4/4! - x^6/6! + ...) / (1 - x^2/3! + x^4/5! - x^6/7! + ...)

Then the first term will be:

1 / (1 - x^2/3! + x^4/5! - x^6/7! + ...)

= (3!5!7!) / (3!5!7! - 5!7!x^2 + 3!7!x^4 - 3!5!x^6)

When I do this with the other terms, they will all have a similar denominator which I can make into a single denominator and then just collect like terms in the numerator?
 
Last edited:
Wait, that doesn't quite make sense to me.

*sighs* I'm going to catch some sleep then work on this again tomorrow. Take it easy
 
Here's a simpler example. (1+x)/(1-x+x^2/2). That's (1+x)/(1-C), where C is x-x^2/2, right? 1/(1-C)=1+C+C^2+C^3+... (geometric series expansion). Suppose I want the first three terms, a+bx+cx^2+dx^3. I've got (1+x)*(1+(x-x^2/2)+(x-x^2/2)^2+(x-x^2/2)^3+... Now you think, wait, I don't need the C^4 term or anything larger because they don't contribute to a, b, c, d. Then you think, in the C^3 part, the only term that counts is x^3. In C^2, I don't need the (x^2/2)^2 term. Just multiply it out being selective about what terms you keep.
 
Ah, I get what you're saying now.

So for this example, (1+x) / (1 - x + x^2/2) = (1+x)(1/(1-c) where c = x - x^2/2

Now, 1/(1-c) = 1 + c^2 + c^3 + ... I will only take it up to c^3. So we have

(1+x)(1 + c + c^2 + c^3) = 1 + c^2 + c^3 + x + xc + xc^2 + xc^3

After expanding the c^2's and c^3's and collecting like terms only up to the third degree, I end up with

1 + x + (3x^2)/2 + (x^3)/2

Is this right?
 
Right. Now can you pull the same trick with the original problem?
 
  • #10
So xcotx = (1 - x^2/2! + x^4/4!) / (1 - x^2/3! + x^4/5!) = (1 - x^2/2! + x^4/4!) (1/(1-c))

Where c = x^2/3! - x^4/5!

Now, 1/(1-c) = 1 + c + c^2 + ... I will only take it up to c^2 because I see that after c^3, the lowest exponent on the x's is greater than 6. So I have

(1 - x^2/2! + x^4/4!)(1 + c + c^2)

After multiplying out and collecting like terms up to the sixth degree, I end up with

1 - (x^2)/3 - (x^4)/45 - (x^6)/180

I think this is right because I plugged in 0.1 into xcotx, and into my above expression, and the answers were the same up until the fifth decimal place or something like that
 
  • #11
They are ok up to the fifth place because the first problem is with your x^6. Firstly, there is ONE term from c^3 that can contribute. You may have also missed or added a thing or two wrong. But you've got the idea.
 
  • #12
Thanks for the help, this is a great technique :)
 
  • #13
Dick, I have a question.

We used the expansion 1/(1-c) = 1 + c + c^2 + c^3 + ... but this expansion is only valid for |c| < 1, so say for example that c = x - (x^2)/2, then does that mean that the Taylor series is only a good approximation for x satisfying |x - (x^2)/2| < 1?
 
  • #14
True. But what you are doing is expanding a taylor series around x=0. You don't have to worry about large values of x. The full taylor series may wind up converging even if |c|>1.
 

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 9 ·
Replies
9
Views
4K