Finding force from electric potential energy using gradients.

Click For Summary

Homework Help Overview

The problem involves a spherically symmetric but non-uniform charge distribution affecting the electric potential energy of a positive point charge located near it. The potential energy is defined piecewise based on the distance from the origin, and the task is to determine the electric force exerted on the charge as a function of its position.

Discussion Character

  • Exploratory, Assumption checking

Approaches and Questions Raised

  • Participants discuss the calculation of the gradient of the potential energy and its relationship to the electric force. There are attempts to derive the force from the potential energy expression, with some questioning the correctness of the derivative and the units of the resulting force.

Discussion Status

Some participants have provided clarifications regarding the relationship between potential energy and force, while others are focused on ensuring the dimensional consistency of their derived expressions. There is an ongoing exploration of the correct formulation of the potential energy and its implications for the force calculation.

Contextual Notes

Participants note potential issues with the original expression for potential energy and its units, indicating a need for careful verification of the derivation and the inclusion of all relevant constants.

mattyc33
Messages
29
Reaction score
0

Homework Statement



In a certain region, a charge distribution exists that is spherically symmetric but
non-uniform. When a positive point charge q is located at (r,θ,φ) near this charge
distribution, there is a resulting electric potential energy for the system given by:

U(r,θ,φ) = ρ(naught)a^2q/18ε(naught)(1-3((r/a)^2) + 2((r/a)^3) for r ≤ a

and 0 for r ≥ a

where ρo is a constant having units of C/m^3 (volume charge density) and a is a
constant having units of m. Note that there is no θ or φ dependence here since the
charge distribution is spherically symmetric.
Determine the electric force F
exerted on charge q as a function of its location
(r,θ,φ) for:
a) r ≤ a
b) r > a
Check that the units of your answer make sense. (Show your work.)

Homework Equations



F=-∇U
∇U=dU/dr r

The Attempt at a Solution

'

I derived ∇U=dU/dr r from the spherical coordinate gradients and since there is no dependence on phi and theta we will just be using the r vector.

therefore:

d/drρ(naught)a^2q/18ε(naught)(1-3((r/a)^2) + 2((r/a)^3) r

= 6r(r-a)/a^3 r

This is where I don't know what to do, how would I express my answer?
 
Physics news on Phys.org
You've calculated grad(U) ... you have the relationship between F and grad(U) ... you are asked for F... what's the problem?

Maybe this will help: You have told us...

$$U(r,\theta,\varphi) = U(r) = \frac{\rho_{0}a^2q}{18\epsilon_0 (1-3\left (\frac{r}{a}\right )^2)} + 2\left (\frac{r}{a}\right )^3 \; : \; r \leq a$$ $$\vec{F} = -\nabla U(r,\theta,\varphi)=-\frac{d}{dr}U(r)\hat{r}$$ $$\frac{d}{dr}U(r)=\frac{6r(r-a)}{a^3}$$... note: I'd check that derivative: I don't see where ##\rho_0##, ##q## and ##\epsilon_0## went for eg.
 
Last edited:
Thank you for clearing things up.

At this point I'm just having trouble proving that my answer will be in Newtons (correct units). Which means I probably derived wrong.
 
In fact, [a]=L so your answer has dimensions of inverse-length.
You should go over the derivation.

Is the expression for U(r) (above) the same as what you are given?
The second term 2((r/a)^3) is dimensionless ... what dimensions should U have?
 
Sorry I must have mistyped the equation in the first place.

It should have been:

(ρ(naught)a^2q/18ε(naught)) (1-3((r/a)^2) + 2((r/a)^3)

Hopefully that makes it more clear.

The units for U should be Joules I believe (could be mistaken)
 
(ρ(naught)a^2q/18ε(naught)) (1-3((r/a)^2) + 2((r/a)^3)
Here, let me help with that... $$U(r)= \frac{\rho_0 a^2 q}{18\epsilon_0} \left ( 1-3\left( \frac{r}{a} \right )^2 +2\left ( \frac{r}{a} \right )^3 \right )$$... LaTeX is totally worth the effort of learning it.

To proceed, I would either change the variable, say z=r/a so $$\frac{dU}{dr}=\frac{1}{a}\frac{dU}{dz}$$... or just rearrange $$U(r)= \frac{\rho_0 q}{18\epsilon_0 a} \left ( a^3 -3ar^2+2r^3 \right )$$... you should be able to see right away that you don't have enough constants in your answer... probably you just forgot to put them back at the end.

BTW: "dimensions" is different from "units" ... electric potential has units of "Volts" (energy per unit charge) ... charge is dimensionless so U has dimensions of energy - which would be M.L2T-2.
 

Similar threads

Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
10
Views
2K
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K