MHB Finding Integer Roots of $h+k=2016$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer Roots
AI Thread Summary
To find integer roots of the equation \(x^2 + hx + k = 0\) given \(h + k = 2016\), it is essential to express \(k\) in terms of \(h\) as \(k = 2016 - h\). The roots \(\alpha\) and \(\beta\) can be derived using Vieta's formulas, where \(\alpha + \beta = -h\) and \(\alpha \beta = k\). By substituting \(k\) into the product equation, the relationship becomes \(\alpha \beta = 2016 - h\). Solving these equations will yield possible integer values for \(h\), \(k\), \(\alpha\), and \(\beta\). The discussion emphasizes the need for integer solutions that satisfy both the sum and product conditions.
Albert1
Messages
1,221
Reaction score
0
given $h+k=2016$, and the two roots $\alpha \,\, and \,\, \beta $ of equation $x^2+hx+k=0$ are all integers , please find the value of:
$h,k,\alpha \,\, and \,\, \beta$
 
Last edited:
Mathematics news on Phys.org
Albert said:
given $h+k=2016$, and the two roots $\alpha \,\, and \,\, \beta $ of equation $x^2+hx+k=0$ are all integers , please find the value of:
$h,k,\alpha \,\, and \,\, \beta$

The roots are $\alpha,\beta$
$(x - \alpha) (x- \beta) = 0 $ or $x^2-(\alpha+ \beta) + \alpha\beta = 0$
comparing with given eqaution
$\alpha+ \beta= - h $ and $\alpha\beta= k$
from h + k = 2106 we get $\alpha\beta - (\alpha + \beta) = 2016 $
or $\alpha\beta - (\alpha + \beta) + 1 = 2017 $
or $(\alpha- 1)(\beta - 1) = 2017 $
as 2017 is a prime $\alpha = 2018$ and $\beta = 2$ and hence $h = - 2020,k = 4036$
or $\alpha = 2$ and $\beta = 2018$ and hence $h = - 2020,k = 4036$
 
$\alpha=2016,\,\beta=0,\,h=2016,\,k=0$ and any permutation thereof are also solutions.
Edit: sign error - the above is incorrect, sorry about that...:o
 
Last edited:
greg1313 said:
$\alpha=2016,\,\beta=0,\,h=2016,\,k=0$ and any permutation thereof are also solutions.

Thanks Greg

forgot the product to be (-1) and (-2017) which gives the above solution subject to the restriction that permutation of
$\alpha,\beta$ is possible but not any permutation
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top