- #1
- 9
- 0
Please Help! Finding kilowatt hours from parallel capacitors
A parallel-connected bank of 5.00 µF capacitors is used to store electric energy. What does it cost to charge the 2900 capacitors of the bank to 45,000 V, assuming a unit cost of $0.03 per kW·h?
CV = Q
1 Joule = 2.77E-7 kWh
1 Volt = 1 Joule per Coulomb
I'm not sure how to convert from Volts to Joules and then to kilowatt hours. I tried CV=Q to find the Coulombs, from where I wanted to find the number of Joules. If my thinking is correct, the 45,000 Volts means there are 45,000 Joules per Coulomb. When i multiplied 5E-6 times 45,000 to find Q my result was that the charge was only .225 C for one capacitor, which seems low. I'm not sure where to go from here, and I'm very unsure of how to convert from Volts to Joules to Kilowatt hours. I know at the end I need to remember to multiply my final result by 2900 for the number of capacitors. I also don't know how the fact they're connected by parallel plays into this.
Please help!
Homework Statement
A parallel-connected bank of 5.00 µF capacitors is used to store electric energy. What does it cost to charge the 2900 capacitors of the bank to 45,000 V, assuming a unit cost of $0.03 per kW·h?
Homework Equations
CV = Q
1 Joule = 2.77E-7 kWh
1 Volt = 1 Joule per Coulomb
The Attempt at a Solution
I'm not sure how to convert from Volts to Joules and then to kilowatt hours. I tried CV=Q to find the Coulombs, from where I wanted to find the number of Joules. If my thinking is correct, the 45,000 Volts means there are 45,000 Joules per Coulomb. When i multiplied 5E-6 times 45,000 to find Q my result was that the charge was only .225 C for one capacitor, which seems low. I'm not sure where to go from here, and I'm very unsure of how to convert from Volts to Joules to Kilowatt hours. I know at the end I need to remember to multiply my final result by 2900 for the number of capacitors. I also don't know how the fact they're connected by parallel plays into this.
Please help!