MHB Finding Limit using L'Hospital's Rule - Need Help!

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The limit of the expression \(\lim_{x\rightarrow \infty }\frac{xe^{\frac{x}{2}}}{x+e^{x}}\) can be evaluated using L'Hospital's Rule, leading to the conclusion that the limit is 0. The derivation involves applying L'Hospital's Rule multiple times and simplifying the resulting expressions. An alternative approach using the squeeze theorem demonstrates that the original expression is bounded above by a term that also approaches zero as \(x\) increases. The discussion highlights that using \(e^x / x^3\) is effective for establishing the limit's behavior, as lower powers are insufficient. Ultimately, both methods confirm that the limit is indeed 0.
Yankel
Messages
390
Reaction score
0
Hello,

I want to find this limit using L'hospital's rule. I got stuck after doing the derivaties.

\[\lim_{x\rightarrow \infty }\frac{xe^{\frac{x}{2}}}{x+e^{x}}\]

The answer should be 0, can you assist ? Thank you !
 
Physics news on Phys.org
(Wave)

$$\lim_{x \to +\infty} \frac{xe^{\frac{x}{2}}}{x+e^x}=\lim_{x \to +\infty} \frac{(xe^{\frac{x}{2}})'}{(x+e^x)'}=\lim_{x \to +\infty} \frac{(x)'e^{\frac{x}{2}}+x(e^{\frac{x}{2}})'}{1+e^x}=\lim_{x \to +\infty} \frac{e^{\frac{x}{2}}+\frac{1}{2}x e^{\frac{x}{2}}}{1+e^x}=\lim_{x \to +\infty} \frac{\frac{1}{2}e^{\frac{x}{2}}+\frac{1}{2}e^{\frac{x}{2}}+\frac{1}{4}xe^{\frac{x}{2}}}{e^x}=\lim_{x \to +\infty} \frac{1+\frac{1}{4}x}{e^{\frac{x}{2}}}=\lim_{x \to +\infty} \frac{\frac{1}{4}}{\frac{1}{2}e^{\frac{x}{2}}}=\lim_{x \to +\infty} \frac{2}{4} e^{-\frac{x}{2}}=0$$
 
Here's another simple way to solve this limit. First recall the power series expansion of the exponential function is:
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots$$
Which for $x > 0$ gives us:
$$\frac{e^x}{x^3} = \frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{2x} + \frac{1}{6} + \cdots \geq \frac{1}{6}$$
Hence:
$$\frac{e^x}{x^3} \geq \frac{1}{6} ~ ~ ~ \iff ~ ~ ~ \frac{x^3}{e^x} \leq 6 ~ ~ ~ \iff ~ ~ ~ e^{-x} \leq \frac{6}{x^3} ~ ~ ~ \iff ~ ~ ~ e^{-\frac{x}{2}} \leq \frac{\sqrt{6}}{x \sqrt{x}}$$
Now for $x > 0$ we can squeeze the original expression as follows:
$$0 \leq \frac{xe^{\frac{x}{2}}}{x+e^{x}} \leq \frac{xe^{\frac{x}{2}}}{e^{x}} = x e^{- \frac{x}{2}}$$
And using the previous result:
$$0 \leq \frac{xe^{\frac{x}{2}}}{x+e^{x}} \leq x \frac{\sqrt{6}}{x \sqrt{x}} = \sqrt{\frac{6}{x}}$$
Clearly both the lower and upper bounds tend to zero as $x \to \infty$, so using the squeeze theorem we conclude:
$$\lim_{x \to \infty} \frac{xe^{\frac{x}{2}}}{x+e^{x}} = 0$$
The reason we consider $e^x / x^3$ is because $e^x / x^2$ isn't strong enough to show the limit is zero (only that it is finite). You can actually come up with arbitrarily tight upper bounds on your expression by considering higher and higher exponents, and the cubic (or, really, exponent $2 + \epsilon$) is the smallest one that actually show it tends to zero.​
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
18
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
1K