MHB Finding Limits Using Limit Laws (Not L'Hopital's Rule)

Click For Summary
The discussion focuses on using limit laws to solve various limit problems without applying L'Hôpital's Rule. For part a, the subtraction limit law was used, yielding a limit of 0. In part b, the limit resulted in an undefined form of infinity, while part c led to a limit of 1/2 after simplification. Part d confirmed that the limit does not exist due to differing absolute values, and part e concluded that the limit approaches 0 using the squeeze theorem. Overall, the thread emphasizes the application of limit laws and algebraic manipulation to find limits effectively.
ardentmed
Messages
158
Reaction score
0
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:
08b1167bae0c33982682_7.jpg


For a, I used the subtraction limit lawto get lim g(x) and lim f(x) and subtracted the answers accordingly. Then I substituted h= infinity and got 0.

For b, I applied the subtraction limit law and split the limit into two, and assessed for the limit. This gave me:
√5 / 0 - √ 5 / 0 = infinity (undefined).

For c, I split up the limit again and took the limits individually; one with the radical and the other as x by itself. This gave me infinity - infinity = 0.

As for d, I got -1 and 1 due to the absolute value, which are not equal. Thus, the limit does not exist.

Finally, for e, knowing that:

$\lim_{{x}\to{0}} $ 2π / x = infinity, I applied this to the function sin(x).

This gave me:
$\lim_{{x}\to{0}} $ sin(infinity) = 1

Taking the limit gave me √x * 1 = 0.

Any help would be greatly appreciated.

Thanks in advance.
 
Physics news on Phys.org
ardentmed said:
Hey guys,

I have a couple more questions about this problem set I've been working on. I'm doubting some of my answers and I'd appreciate some help.

Question:For a, I used the subtraction limit lawto get lim g(x) and lim f(x) and subtracted the answers accordingly. Then I substituted h= infinity and got 0.

For b, I applied the subtraction limit law and split the limit into two, and assessed for the limit. This gave me:
√5 / 0 - √ 5 / 0 = infinity (undefined).

For c, I split up the limit again and took the limits individually; one with the radical and the other as x by itself. This gave me infinity - infinity = 0.

As for d, I got -1 and 1 due to the absolute value, which are not equal. Thus, the limit does not exist.

Finally, for e, knowing that:

$\lim_{{x}\to{0}} $ 2π / x = infinity, I applied this to the function sin(x).

This gave me:
$\lim_{{x}\to{0}} $ sin(infinity) = 1

Taking the limit gave me √x * 1 = 0.

Any help would be greatly appreciated.

Thanks in advance.

$$\lim_{h \to 0} \frac{(8+h)^{-1}-8^{-1}}{h}=\lim_{h \to 0} \frac{\frac{1}{8+h}-\frac{1}{8}}{h}=\lim_{h \to 0} \frac{\frac{8-(8+h)}{8(8+h)}}{h}=\lim_{h \to 0} \frac{\frac{-h}{8(8+h)}}{h}=\lim_{h \to 0} \frac{-1}{8(8+h)}=-\frac{1}{64}$$

For the second one:

$$\frac{\sqrt{x^2+1}-\sqrt{5}}{x-2}=\frac{(\sqrt{x^2+1}- \sqrt{5})(\sqrt{x^2+1}+ \sqrt{5})}{(x-2)(\sqrt{x^2+1}+ \sqrt{5})}=\frac{x^2-4}{(x-2)(\sqrt{x^2+1}+ \sqrt{5})}=\frac{x+2}{\sqrt{x^2+1}+ \sqrt{5}}$$

Now take the limit $x \to 2$ and you will see that it is not undefined.

For c:

$$\sqrt{x^2+x+1}-x=\frac{(\sqrt{x^2+x+1}-x)(\sqrt{x^2+x+1}+x)}{\sqrt{x^2+x+1}+x}=\frac{x+1}{\sqrt{x^2+x+1}+x}=\frac{x+1}{x \left ( \sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1 \right )}$$

Now take the limit $x \to +\infty$.

You are right that the limit of the question d does not exist.

For e,notice that the limit $\lim_{x \to 0} \sin(\frac{2 \pi}{x})$ does not exist.
 
I'm not sure if you are familiar with derivatives, but I want to point out a unique solution to a) and b) These are in a form that is awful similar to the definition of a derivative.
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\lim_{x \to a} \frac{f(x)-f(a)}{x-a}
$$a) $$\lim_{h \to 0} \frac{\frac{1}{8+h}-\frac{1}{8}}{h}$$

We can rewrite this as: $$\lim_{h \to 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}$$ at x = 8 = $$f'(8)$$ = $$\frac{-1}{64}$$

b) $$\lim_{x \to 2} \frac{\sqrt{x^2+1}-\sqrt{5}}{x-2}$$

We can rewrite this as: $$\lim_{x \to 2} \frac{f(x)-f(a)}{x-a}$$, where x = 2
$$= f'(2) = \frac{2}{\sqrt{5}}$$
 
evinda said:
$$\lim_{h \to 0} \frac{(8+h)^{-1}-8^{-1}}{h}=\lim_{h \to 0} \frac{\frac{1}{8+h}-\frac{1}{8}}{h}=\lim_{h \to 0} \frac{\frac{8-(8+h)}{8(8+h)}}{h}=\lim_{h \to 0} \frac{\frac{-h}{8(8+h)}}{h}=\lim_{h \to 0} \frac{-1}{8(8+h)}=-\frac{1}{64}$$

For the second one:

$$\frac{\sqrt{x^2+1}-\sqrt{5}}{x-2}=\frac{(\sqrt{x^2+1}- \sqrt{5})(\sqrt{x^2+1}+ \sqrt{5})}{(x-2)(\sqrt{x^2+1}+ \sqrt{5})}=\frac{x^2-4}{(x-2)(\sqrt{x^2+1}+ \sqrt{5})}=\frac{x+2}{\sqrt{x^2+1}+ \sqrt{5}}$$

Now take the limit $x \to 2$ and you will see that it is not undefined.

For c:

$$\sqrt{x^2+x+1}-x=\frac{(\sqrt{x^2+x+1}-x)(\sqrt{x^2+x+1}+x)}{\sqrt{x^2+x+1}+x}=\frac{x+1}{\sqrt{x^2+x+1}+x}=\frac{x+1}{x \left ( \sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1 \right )}$$

Now take the limit $x \to +\infty$.

You are right that the limit of the question d does not exist.

For e,notice that the limit $\lim_{x \to 0} \sin(\frac{2 \pi}{x})$ does not exist.
For c, I computed 1/2, albeit I'm not too sure about that. I canceled out the x's first, and then substituted x-> infinity for the rest.

As for e, $\lim_{x \to 0} \sin(\frac{2 \pi}{x})$ due to squeeze theorem, where -1/x and 1/x also DNE.
 
ardentmed said:
For c, I computed 1/2, albeit I'm not too sure about that. I canceled out the x's first, and then substituted x-> infinity for the rest.

$$\lim_{x \to +\infty} \frac{x+1}{x( \sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1)}=\lim_{x \to \infty} \frac{1+\frac{1}{x}}{\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+1}=\frac{1}{2}$$

So,your result is correct! (Clapping)
 
Last edited:
ardentmed said:
As for e, $\lim_{x \to 0} \sin(\frac{2 \pi}{x})$ due to squeeze theorem, where -1/x and 1/x also DNE.

For e,as you correctly mentioned,we know that:

$$-1 \leq \sin \left ( \frac{2 \pi}{x}\right ) \leq 1$$

So:
$$-\sqrt{x} \leq \sqrt{x} \sin \left ( \frac{2 \pi}{x}\right ) \leq \sqrt{x} \Rightarrow \lim_{x \to 0} -\sqrt{x} \leq \lim_{x \to 0} \sqrt{x} \sin \left ( \frac{2 \pi}{x}\right ) \leq \lim_{x \to 0} \sqrt{x} \Rightarrow 0 \leq \lim_{x \to 0} \sqrt{x} \sin \left ( \frac{2 \pi}{x}\right ) \leq 0$$

Therefore,according to the squeeze theorem:

$$\lim_{x \to 0} \sqrt{x} \sin \left ( \frac{2 \pi}{x} \right )=0$$