I Finding ##\partial^\mu\phi## for a squeezed state in QFT

Click For Summary
The discussion focuses on calculating the derivative ##\partial^\mu\phi## for a massless squeezed state in quantum field theory, defined as $$\phi=\sum_k\left(a_kf_k+a^\dagger_kf^*_k\right)$$ with specific mode functions. The challenge arises from handling the sum over k and the ladder operators during differentiation. It is clarified that ##\partial_\mu## can be applied term by term, treating the ladder operators as constants if they are independent of ##x##. Additionally, a different dummy summation index should be used to avoid conflicts with the free index on ##\partial_\mu##. The discussion emphasizes that the expression represents a field operator rather than a state in Fock space.
Sciencemaster
Messages
129
Reaction score
20
TL;DR
I'm trying to apply an operator to a massless and minimally coupled squeezed state, I'm having trouble calculating ##\partial^\mu\phi## but due to a sum over k and the ladder operators.
I'm trying to apply an operator to a massless and minimally coupled squeezed state. I have defined my state as $$\phi=\sum_k\left(a_kf_k+a^\dagger_kf^*_k\right)$$, where the ak operators are ladder operators and fk is the mode function $$f_k=\frac{1}{\sqrt{2L^3\omega}}e^{ik_\mu x^\mu}$$ (assuming periodic boundary condition in a three-dimensional box of side L where k is the wave number).
However, I'm having trouble calculating ##\partial^\mu\phi## due to the sum over k and the ladder operators. I would very much appreciate it if someone could help me through the math of this step!
 
Physics news on Phys.org
Well, ##\partial_\mu## is a linear operator, so you can apply it term by term in the sum. As for the ladder operators, if they're independent of ##x## you can just treat them like constants during the partial differentiation.

Btw, you'll need to use a different dummy summation index in the exponent so as not to conflict with the free index ##\mu## on ##\partial_\mu##. E.g., change ##k_\mu x^\mu## to ##k_\alpha x^\alpha##.
 
  • Like
Likes topsquark and vanhees71
One should also note that this doesn't describe a state but a field operator in terms of free-field energy eigenmodes or a neutral scalar field. The ##\hat{a}_k## are annihilation and ##\hat{a}_k^{\dagger}## in Fock space.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...