I Finding ##\partial^\mu\phi## for a squeezed state in QFT

Sciencemaster
Messages
129
Reaction score
20
TL;DR Summary
I'm trying to apply an operator to a massless and minimally coupled squeezed state, I'm having trouble calculating ##\partial^\mu\phi## but due to a sum over k and the ladder operators.
I'm trying to apply an operator to a massless and minimally coupled squeezed state. I have defined my state as $$\phi=\sum_k\left(a_kf_k+a^\dagger_kf^*_k\right)$$, where the ak operators are ladder operators and fk is the mode function $$f_k=\frac{1}{\sqrt{2L^3\omega}}e^{ik_\mu x^\mu}$$ (assuming periodic boundary condition in a three-dimensional box of side L where k is the wave number).
However, I'm having trouble calculating ##\partial^\mu\phi## due to the sum over k and the ladder operators. I would very much appreciate it if someone could help me through the math of this step!
 
Physics news on Phys.org
Well, ##\partial_\mu## is a linear operator, so you can apply it term by term in the sum. As for the ladder operators, if they're independent of ##x## you can just treat them like constants during the partial differentiation.

Btw, you'll need to use a different dummy summation index in the exponent so as not to conflict with the free index ##\mu## on ##\partial_\mu##. E.g., change ##k_\mu x^\mu## to ##k_\alpha x^\alpha##.
 
  • Like
Likes topsquark and vanhees71
One should also note that this doesn't describe a state but a field operator in terms of free-field energy eigenmodes or a neutral scalar field. The ##\hat{a}_k## are annihilation and ##\hat{a}_k^{\dagger}## in Fock space.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top