MHB Finding Real Part of $z$ for Complex Numbers

Click For Summary
To find the real part of the complex number $z$, the condition that $\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ must be a real number is key. The given complex numbers are $z_1 = 18 + 83i$, $z_2 = 18 + 39i$, and $z_3 = 78 + 99i$. By analyzing the relationships between these points in the complex plane, the goal is to maximize the imaginary part of $z$. The solution ultimately reveals that the real part of $z$ is 78.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $z_1=18+83i,\,z_2=18+39i$ and $z_3=78+99i$, where $i=\sqrt{-1}$. Let $z$ be the unique complex number with the properties that

$\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$.
 
Mathematics news on Phys.org
[TIKZ]
\begin{scope}
\draw (0,0) circle(3);
\end{scope}
\node (1) at (0,0) {c};
\draw (0,0) node[anchor=south] {.};
\coordinate[label=left: $z_2$] (E) at (-2,-2.236);
\coordinate[label=left: $z_1$] (A) at (-2,2.236);
\coordinate[label=above: $z$] (B) at (-1,2.828);
\coordinate[label=above: $z_3$] (C) at (1.2,2.75);
\coordinate[label=below: $z$] (D) at (2,-2.236);
\draw (E) -- (A);
\draw (E) -- (B);
\draw (E) -- (C);
\draw (E) -- (D);
\draw (A) -- (B);
\draw (B) -- (C);
\draw (C) -- (D);
\node (1) at (-1.8,2) {$\theta_1$};
\node (2) at (-0.8,2.6) {$\theta_2$};
\node (3) at (1.8,-2.0) {$\theta_2$};
[/TIKZ]

Let $\dfrac{z_3-z_1}{z_2-z_1}=r_1\cis(\theta_1)$, where $0<\theta_1<180^{\circ}$.

If $z$ is on or below the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_2)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1+\theta_2)$ is real, it follows that $\theta_1+\theta_2=180^{\circ}$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

On the other hand, if $z$ is above the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(-\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_1)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1-\theta_2)$ is real, it follows that $\theta_1=\theta_2$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

In either case, $z$ must lie on the circumcircle of $\triangle z_1 z_2 z_3$ whose center is the intersection of the perpendicular bisectors of $\overline{z_1z_2}$ and $\overline{z_1z_3}$, namely, the lines $y=\dfrac{39+83}{2}=61$ and $16(y-91)=-60(x-48)$.

Thus the center of the circle is $c=56+61i$. The imaginary part of $z$ is maximal when $z$ is at the top of the circle, and the real part of $z$ is 56.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K