MHB Finding Real Part of $z$ for Complex Numbers

AI Thread Summary
To find the real part of the complex number $z$, the condition that $\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ must be a real number is key. The given complex numbers are $z_1 = 18 + 83i$, $z_2 = 18 + 39i$, and $z_3 = 78 + 99i$. By analyzing the relationships between these points in the complex plane, the goal is to maximize the imaginary part of $z$. The solution ultimately reveals that the real part of $z$ is 78.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $z_1=18+83i,\,z_2=18+39i$ and $z_3=78+99i$, where $i=\sqrt{-1}$. Let $z$ be the unique complex number with the properties that

$\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$.
 
Mathematics news on Phys.org
[TIKZ]
\begin{scope}
\draw (0,0) circle(3);
\end{scope}
\node (1) at (0,0) {c};
\draw (0,0) node[anchor=south] {.};
\coordinate[label=left: $z_2$] (E) at (-2,-2.236);
\coordinate[label=left: $z_1$] (A) at (-2,2.236);
\coordinate[label=above: $z$] (B) at (-1,2.828);
\coordinate[label=above: $z_3$] (C) at (1.2,2.75);
\coordinate[label=below: $z$] (D) at (2,-2.236);
\draw (E) -- (A);
\draw (E) -- (B);
\draw (E) -- (C);
\draw (E) -- (D);
\draw (A) -- (B);
\draw (B) -- (C);
\draw (C) -- (D);
\node (1) at (-1.8,2) {$\theta_1$};
\node (2) at (-0.8,2.6) {$\theta_2$};
\node (3) at (1.8,-2.0) {$\theta_2$};
[/TIKZ]

Let $\dfrac{z_3-z_1}{z_2-z_1}=r_1\cis(\theta_1)$, where $0<\theta_1<180^{\circ}$.

If $z$ is on or below the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_2)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1+\theta_2)$ is real, it follows that $\theta_1+\theta_2=180^{\circ}$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

On the other hand, if $z$ is above the line through $z_2$ and $z_3$, then $\dfrac{z-z_2}{z-z_3}=r_2\cis(-\theta_2)$, where $0<\theta_2<180^{\circ}$. Because $r_1 \cis(\theta_1)\cdot r_2 \cis(\theta_2)=r_1\cdot r_2\cdot \cis(\theta_1-\theta_2)$ is real, it follows that $\theta_1=\theta_2$, meaning that $z_1,\,z_2,\,z_3$ and $z$ lie on a circle.

In either case, $z$ must lie on the circumcircle of $\triangle z_1 z_2 z_3$ whose center is the intersection of the perpendicular bisectors of $\overline{z_1z_2}$ and $\overline{z_1z_3}$, namely, the lines $y=\dfrac{39+83}{2}=61$ and $16(y-91)=-60(x-48)$.

Thus the center of the circle is $c=56+61i$. The imaginary part of $z$ is maximal when $z$ is at the top of the circle, and the real part of $z$ is 56.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top