Finding rotation axis and angle, using eigenvalues

Click For Summary
SUMMARY

The discussion centers on finding the rotation axis and angle using eigenvalues in linear algebra, specifically with a matrix M that has a determinant of 1. The participants clarify that there is no rotation around a plane; rather, it involves reflection in a plane followed by rotation around the normal to that plane. The correct approach to find the axis of rotation is to identify the eigenvector associated with the eigenvalue of 1, which leads to a line through the origin in the direction of that eigenvector.

PREREQUISITES
  • Understanding of eigenvalues and eigenvectors in linear algebra
  • Familiarity with 3x3 matrices and their properties
  • Knowledge of determinants and their implications in transformations
  • Ability to solve simultaneous equations
NEXT STEPS
  • Study the process of finding eigenvectors for 3x3 matrices
  • Learn about the geometric interpretation of eigenvalues and eigenvectors
  • Explore the concepts of reflection and rotation in linear transformations
  • Review the Grand-Schmidt method for orthogonalization in linear algebra
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with linear transformations, eigenvalues, and eigenvectors, particularly in the context of 3D rotations and reflections.

ahmed markhoos
Messages
49
Reaction score
2
Member warned about posting with no template
http://im54.gulfup.com/ZtJZd5.png

http://im54.gulfup.com/SJgJXh.png Till now compared with other subjects that I studied by my self, linear algebra is really the toughest one :bow:

Anyway, here I found a plane using characteristic eq. which really surprised me since det(M)=1, M is the matrix I've posted.

##-2x+y+z=0## , how is that? a rotation around plane! in which dimension that's possible!, as the book did I took a vector satisfy the plane that's ##(1,1,1)##, then I found ##\theta = π##

Everything is correct according to book solution. But I'm not convinced yet! a plane has a lot of vectors in many directions nevertheless we derived the axis of rotation from plane eq.?! that's really weird.

Thanks a lot guys.
 
Last edited by a moderator:
Physics news on Phys.org
There is no rotation around a plane. It is reflection in a plane followed by (or preceded by, as the two operations commute) a rotation around the normal to the plane (a plane only has one normal). The axis of rotation is the straight line through the origin in the direction of that normal.
 
andrewkirk said:
There is no rotation around a plane. It is reflection in a plane followed by (or preceded by, as the two operations commute) a rotation around the normal to the plane (a plane only has one normal). The axis of rotation is the straight line through the origin in the direction of that normal.

But the determinant shows no reflection ?
 
ahmed markhoos said:
But the determinant shows no reflection ?
Then in that case you don't need to bother with a plane. Just find the axis of rotation. It will be the line through the origin in the direction of the eigenvector with an associated eigenvalue of 1.
 
  • Like
Likes   Reactions: ahmed markhoos
andrewkirk said:
Then in that case you don't need to bother with a plane. Just find the axis of rotation. It will be the line through the origin in the direction of the eigenvector with an associated eigenvalue of 1.

I did what you exactly said, but as you can see from the matrix in the question: "using first row"

##-x+2y+2z=\frac{1}{3}λx##

λ=1, that gives me ##-2x+y+z=0##

there is more than one vector satisfy the conditions you said "through the origin and eigenvector with an associated eigenvalue of 1"

what am I really missing?, I am supposed to have a line not a plane!
 
What eigenvector(s) have you found that has an eigenvalue of 1?

Have they taught you how to find eigenvectors?
 
andrewkirk said:
What eigenvector(s) have you found that has an eigenvalue of 1?

Have they taught you how to find eigenvectors?

I'm frustrated now by your question ><.

I know how to find eigenvalues and eigenvectors for 2×2 matrix with no doubt. Maybe I'm really not getting the idea of 3×3 matrices?! The book I read didn't point out clearly how to find the eigenvectors (of 3×3), just degeneracy in 3×3 matrices by Grand-Schmidt method.

Now I'm afraid that's the answer might be NO .
"Mathematical Methods in the physical sciences, by Mary Boas"
 
Last edited:
Do you know how to solve simultaneous equations then? Because once you have an eigenvalue of ##\lambda## you can find an eigenvector as follows, where M is the matrix you wrote above and ##\vec{v}## is the eigenvector:

$$M\vec{v}=\lambda \vec{v}=\lambda I\vec{v}$$
Hence
$$M'\vec{v}=0$$
where ##M'=M-\lambda I## - that is, M' is the original matrix M, with ##\lambda## subtracted from each of the diagonal elements.

So just solve that second equation and you're done.

Here of course, you have ##\lambda = 1## for the eigenvalue of interest.
 
Last edited:
  • Like
Likes   Reactions: ahmed markhoos
andrewkirk said:
Do you know how to solve simultaneous equations then? Because once you have an eigenvalue of ##\lambda## you can find an eigenvector as follows, where M is the matrix you wrote above and ##\vec{v}## is the eigenvector:

$$M\vec{v}=\lambda \vec{v}=\lambda I\vec{v}$$
Hence
$$M'\vec{v}=0$$
where ##M'=M-\lambda I## - that is, M' is the original matrix M, with ##\lambda## subtracted from each of the diagonal elements.

So just solve that second equation and you're done.

Here of course, you have ##\lambda = 1## for the eigenvalue of interest.
andrewkirk said:
Do you know how to solve simultaneous equations then? Because once you have an eigenvalue of ##\lambda## you can find an eigenvector as follows, where M is the matrix you wrote above and ##\vec{v}## is the eigenvector:

$$M\vec{v}=\lambda \vec{v}=\lambda I\vec{v}$$
Hence
$$M'\vec{v}=0$$
where ##M'=M-\lambda I## - that is, M' is the original matrix M, with ##\lambda## subtracted from each of the diagonal elements.

So just solve that second equation and you're done.

Here of course, you have ##\lambda = 1## for the eigenvalue of interest.

Thanks a lot,

I was blind from seeing that obvious thing !
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
9
Views
8K
Replies
4
Views
21K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K