mathmari
Gold Member
MHB
- 4,984
- 7
Ah ok... (Thinking)I like Serena said:No, the Taylor expansion is $\cos x = 1-\frac 12 x^2 + \frac 1{4!}x^4 - ...$.
It's just that $\cos$ has a horizontal tangent at $x=0$.
We can set a bound with a line that has a non-horizontal tangent.$|\cos x|\le 1$. Therefore $\frac{1}{|\cos(x)|}\ge 1$. (Nerd)
What do you mean? (Wondering)I like Serena said:The remainder term is actually:
$$R_3(x) = \frac{1}{4!} f^{(4)}\,(\xi) x^4$$
I think we need a couple more factors... (Thinking)