Finding Tension and theta in a pulley system

In summary, the conversation revolves around solving a problem involving two masses and a pulley in equilibrium. The equations T1sin(30)+T2sinΘ+T2=9g and T2cosΘ=T1cos30 are used to represent the system. There is a discussion on considering the system as a whole or separately, and resolving vertically and horizontally. The final result is that the angle Θ=73.7° satisfies the equations, but there is also a second solution of Θ=13.8° that may not make sense in a physical context.
  • #1
jalalapeno
11
1
Member advised to use the provided formatting template when starting a new thread in a homework forum.
What I've attempted to do is resolve vertically and horizontally:
T1sin(30)+T2sinΘ+T2=9g
T2cosΘ=T1cos30

After that... I'm completely stuck. Any help would be appreciated, I've spent so long on this I bet I'm just missing one simple thing.
Thanks in advance
 

Attachments

  • upload_2017-12-7_18-10-7.png
    upload_2017-12-7_18-10-7.png
    10.6 KB · Views: 668
  • upload_2017-12-7_18-10-56.png
    upload_2017-12-7_18-10-56.png
    47 KB · Views: 601
Physics news on Phys.org
  • #2
jalalapeno said:
T1sin(30)+T2sinΘ+T2=9g
T2cosΘ=T1cos30
What is your reasoning behind those equations? What are the systems you are drawing free-body-diagrams and considering equilibrium for? Note that the equilibrium means that each mass in the system is in equilibrium and you can consider them separately.
 
  • #3
Orodruin said:
What is your reasoning behind those equations? What are the systems you are drawing free-body-diagrams and considering equilibrium for? Note that the equilibrium means that each mass in the system is in equilibrium and you can consider them separately.
I got those equations by considering the system as a whole, resolving vertically and horizontally.
So you're saying T2=5g?
 
  • #4
jalalapeno said:
I got those equations by considering the system as a whole, resolving vertically and horizontally.
"As a whole" really has no meaning. I suspect you mean "masses 1 and 2". The system "as a whole" would include the walls, ceiling, pulley, etc. Now, of course you can consider both masses together, but you can also consider them one at a time since each of them needs to be at equilibrium for the system to be at equilibrium. I suggest that you do this.
 
  • #5
Orodruin said:
"As a whole" really has no meaning. I suspect you mean "masses 1 and 2". The system "as a whole" would include the walls, ceiling, pulley, etc. Now, of course you can consider both masses together, but you can also consider them one at a time since each of them needs to be at equilibrium for the system to be at equilibrium. I suggest that you do this.
:oldfrown::oldfrown::oldfrown: I just keep getting different answers. My latest answers are Θ=13.8 and Θ=73.7
From those it should be 73.7 because the angle should be larger than 30 (Θ1 )
Can anyone also do it to double check? or just tell me I'm wrong haha
 
  • #6
Please show the reasoning behind your results. It is the only way we can check them and look for where your logic fails.
 
  • #7
Orodruin said:
Please show the reasoning behind your results. It is the only way we can check them and look for where your logic fails.
Of course

Resolving Vertically for mass B gives: T2 = 5g
Resolving Vertically for mass A gives: T1sin(30) + T2sinΘ = 4g
Subbing T2 = 5g back: 1/2T1 + 5gsinΘ = 4g
sin30 = 1/2
Resolving Horizontally for mass A gives: 5gcosΘ = T1cos30
Rearranging for T1 : T1 = 5gcosΘ/cos(30)
Subbing T1 into the 2nd formula gives: 5gsinΘ + (1/2)(5gcosΘ/cos(30))=4g
Making that a bit neater gives: sinΘ + √3/3cosΘ = 4/5
sinΘ - 4/5 = -(√3/3cosΘ)
Squaring the whole equation gives: sin2Θ - 8/5sinΘ + 16/25 =1/3cos2Θ
cosΘ = 1 - sin2Θ

4/3sin2Θ - 8/5sinΘ +23/75 = 0
sinΘ = 0.96 and sinΘ = 0.24
Θ = 73.7° and Θ = 17.9°
 
  • #8
Might be a bit hard to follow apologies
 
  • #9
Which of your two solutions satisfies
jalalapeno said:
sinΘ - 4/5 = -(√3/3cosΘ)
 
  • #10
haruspex said:
Which of your two solutions satisfies
sinΘ = 73.7 satisfies sinΘ - 4/5 = -(√3/3cosΘ)
Thank you both for your help, really appreciate it!
:partytime::partytime::partytime:
 
  • Like
Likes Orodruin
  • #11
jalalapeno said:
sinΘ = 73.7 satisfies sinΘ - 4/5 = -(√3/3cosΘ)
You mean θ=73.7°, but doesn't that make the two sides opposite signs?
 
  • #12
haruspex said:
You mean θ=73.7°, but doesn't that make the two sides opposite signs?
It does, but I’ve decided to ignore that for now as this question has given me enough stress :D
 
  • #13
jalalapeno said:
It does, but I’ve decided to ignore that for now as this question has given me enough stress :D
You would do better to take note of it. What about the other solution that came out of the quadratic?
jalalapeno said:
the angle should be larger than 30
Why?
 
  • #14
haruspex said:
You would do better to take note of it. What about the other solution that came out of the quadratic?
Why?
I have compared my results to others in the class and nobody really knows how to do it...
 
  • #15
jalalapeno said:
I have compared my results to others in the class and nobody really knows how to do it...
What does this have to do with the question haruspex asked? Or the solution to the problem for that matter?
 
  • #16
Orodruin said:
What does this have to do with the question haruspex asked? Or the solution to the problem for that matter?
That’s my bad
Using both results from the quadratic I do get an answer that works, and that is 13 degrees but I don’t know if that makes sense in a physical sense.
 
  • #17
Then why do you not just check that the solution satisfies the original equilibrium equations that you wrote down?
 
  • #18
Orodruin said:
Then why do you not just check that the solution satisfies the original equilibrium equations that you wrote down?
I have, and one of the solutions satisfies the equation. The angle I have calculated isn’t 13.8 degrees. I am trying to work out if this makes sense in the real world.
 
  • #19
I'm getting 13.85 degrees.

The thing you need to remember is that diagrams such as the one you uploaded do not necessarily reflect the problem's eventual solution. Even though the diagram is drawn so it appears that ##\theta_2 > \theta_1##, there is no reason to assume that this is the case. This is a specific instance of a problem I've encountered many times--frequently, when I'm thinking about a complicated problem, I draw a diagram and begin to make assumptions and write equations based on it, only to realize later that I've inadvertently incorporated some of the "non-generic" features of the diagram into the math.

By the way, I always recommend writing your equations without using specific numbers at first, only substituting at the end of the problem. In this case it makes the solution much cleaner and easier to follow. Indeed, the equations for equilibrium are
$$M_A g = T_1 \sin (\theta_1) + T_2 \sin(\theta_2)$$ $$T_1 \cos(\theta_1) = T_2 \cos(\theta_2)$$ $$M_B g = T_2$$
Using the second equation to eliminate ##T_1## and the third to eliminate ##T_2##, and rearranging a bit, gives
$$\frac{M_A}{M_B} = \tan(\theta_1) \cos(\theta_2) + \sin(\theta_2)$$
Now, there are various ways of solving this equation, but the clearest seems to be doing what the problem suggests--using this to generate a quadratic equation for ##\tan(\theta_2)##. Let's clean up the notation a bit: Let ##r = M_A / M_B##, ##t = \tan(\theta_1)##, and ##T = \tan(\theta_2)##. Divide both sides by ##\cos(\theta_2)## and square:
$$r^2 \left( \frac{1}{\cos^2(\theta_2)} \right) = t^2 + 2tT + T^2$$
Finally, use the identity ##\cos^{-2}(\theta_2) = 1 + \tan(\theta_2)^2 = 1 + T^2## to get (again after rearranging)
$$(1 - r^2) T^2 + 2tT + (t^2 - r^2) = 0$$ which is the promised quadratic equation. Solving it gives the two solutions ##T \approx .246619## and ##T \approx -3.45412##, of which only the former is physical. Taking an inverse tangent gives ##\theta_2 \approx 13.85## degrees.
 
  • Like
Likes jalalapeno
  • #20
VKint said:
I'm getting 13.85 degrees.

The thing you need to remember is that diagrams such as the one you uploaded do not necessarily reflect the problem's eventual solution. Even though the diagram is drawn so it appears that ##\theta_2 > \theta_1##, there is no reason to assume that this is the case. This is a specific instance of a problem I've encountered many times--frequently, when I'm thinking about a complicated problem, I draw a diagram and begin to make assumptions and write equations based on it, only to realize later that I've inadvertently incorporated some of the "non-generic" features of the diagram into the math.

By the way, I always recommend writing your equations without using specific numbers at first, only substituting at the end of the problem. In this case it makes the solution much cleaner and easier to follow. Indeed, the equations for equilibrium are
$$M_A g = T_1 \sin (\theta_1) + T_2 \sin(\theta_2)$$ $$T_1 \cos(\theta_1) = T_2 \cos(\theta_2)$$ $$M_B g = T_2$$
Using the second equation to eliminate ##T_1## and the third to eliminate ##T_2##, and rearranging a bit, gives
$$\frac{M_A}{M_B} = \tan(\theta_1) \cos(\theta_2) + \sin(\theta_2)$$
Now, there are various ways of solving this equation, but the clearest seems to be doing what the problem suggests--using this to generate a quadratic equation for ##\tan(\theta_2)##. Let's clean up the notation a bit: Let ##r = M_A / M_B##, ##t = \tan(\theta_1)##, and ##T = \tan(\theta_2)##. Divide both sides by ##\cos(\theta_2)## and square:
$$r^2 \left( \frac{1}{\cos^2(\theta_2)} \right) = t^2 + 2tT + T^2$$
Finally, use the identity ##\cos^{-2}(\theta_2) = 1 + \tan(\theta_2)^2 = 1 + T^2## to get (again after rearranging)
$$(1 - r^2) T^2 + 2tT + (t^2 - r^2) = 0$$ which is the promised quadratic equation. Solving it gives the two solutions ##T \approx .246619## and ##T \approx -3.45412##, of which only the former is physical. Taking an inverse tangent gives ##\theta_2 \approx 13.85## degrees.

Thank you for the tips and very clear explanation. I think the way you have done it by not substituting in numbers until the end is the best way to do as to not get confused or make any mistakes.
Really appreciate your help :D
 
  • #21
jalalapeno said:
Thank you for the tips and very clear explanation. I think the way you have done it by not substituting in numbers until the end is the best way to do as to not get confused or make any mistakes.
Really appreciate your help :D
Yes, I always encourage working purely symbolically until the end. It has many advantages.
It might help to understand why the non-physical solution occurs. In order to obtain the quadratic equation you had to square
jalalapeno said:
sinΘ - 4/5 = -(√3/3cosΘ)
But you would have got the same squared equation had you started with
sinΘ - 4/5 = +(√3/3cosΘ)
So this creates an ambiguity in the squared form. To figure out which is the right answer you have to substitute the two answers in the unsquared equation.
 
  • Like
Likes jalalapeno

What is tension in a pulley system?

Tension in a pulley system refers to the amount of force being exerted on the pulley ropes or cables. It is typically measured in units of Newtons (N) or pounds (lbs).

How do you calculate tension in a pulley system?

To calculate tension in a pulley system, you need to know the mass of the object being lifted, the acceleration due to gravity (9.8 m/s²), and the angle of the ropes or cables attached to the pulley. Then, you can use the equation T = m x g x sin(theta), where T is tension, m is the mass, g is the acceleration due to gravity, and theta is the angle of the ropes or cables.

What is theta in a pulley system?

In a pulley system, theta refers to the angle between the ropes or cables attached to the pulley. This angle is important in determining the tension in the pulley system.

How do you find theta in a pulley system?

To find theta in a pulley system, you can use trigonometry. First, measure the length of the ropes or cables attached to the pulley. Then, measure the horizontal and vertical distances from the pulley to the object being lifted. Finally, use the inverse tangent function (tan^-1) to calculate the angle theta.

What are the factors that affect tension in a pulley system?

The tension in a pulley system is affected by the mass of the object being lifted, the acceleration due to gravity, and the angle of the ropes or cables attached to the pulley. Other factors that may affect tension include the friction of the pulley and the strength of the ropes or cables.

Similar threads

  • Introductory Physics Homework Help
Replies
22
Views
3K
  • Introductory Physics Homework Help
Replies
13
Views
2K
  • Introductory Physics Homework Help
Replies
29
Views
884
  • Introductory Physics Homework Help
Replies
6
Views
2K
Replies
8
Views
9K
  • Introductory Physics Homework Help
Replies
4
Views
3K
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
28
Views
5K
  • Introductory Physics Homework Help
Replies
9
Views
4K
  • Introductory Physics Homework Help
Replies
12
Views
1K
Back
Top