MHB Finding the Difference between Two Intersecting Equations

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Difference
Click For Summary
The discussion focuses on determining the conditions under which two equations, represented by their respective diagrams, intersect. The first equation is given as $x^2+y^2=4+12x+6y$, while the second is $x^2+y^2=k+4x+12y$. The intersection occurs when the parameter $k$ falls within the range $a \leq k \leq b$. The key task is to find the difference $b-a$. The solution to this problem is deemed very good, indicating a successful resolution of the intersection conditions.
Albert1
Messages
1,221
Reaction score
0
Two diagrams of equations :
(1)$x^2+y^2=4+12x+6y$
and
(2)$x^2+y^2=k+4x+12y$
will intersect only when:$a\leq k \leq b$
find:$b-a$
 
Mathematics news on Phys.org
We have $$x^2+y^2=4+12x+6y\Rightarrow(x-6)^2+(y-3)^2=49$$ and $$x^2+y^2=k+4x+12y\Rightarrow(x-2)^2+(y-6)^2=k+40$$The distance between these two circles is 5 units, with one of the circles having a radius of 7. This means the other circle must have a radius of at least 2, giving a lower bound on k of $-36$. Since this other circle remains in contact with the circle of radius 7 until its radius is 12, an upper bound on k is 104. So we have $$-36\le k\le104,b-a=104-(-36)=140$$
 
greg1313 said:
We have $$x^2+y^2=4+12x+6y\Rightarrow(x-6)^2+(y-3)^2=49$$ and $$x^2+y^2=k+4x+12y\Rightarrow(x-2)^2+(y-6)^2=k+40$$The distance between these two circles is 5 units, with one of the circles having a radius of 7. This means the other circle must have a radius of at least 2, giving a lower bound on k of $-36$. Since this other circle remains in contact with the circle of radius 7 until its radius is 12, an upper bound on k is 104. So we have $$-36\le k\le104,b-a=104-(-36)=140$$
very good solution !
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K