MHB Finding the distance between a point and a line

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Line Point
AI Thread Summary
The discussion focuses on calculating the perpendicular distance between a point and a line in analytic geometry. Two primary methods are presented: the first involves geometric relationships and the use of similarity to derive the formula d = |mx₀ + b - y₀| / √(m² + 1), while the second method employs the intersection of a perpendicular line through the point and the original line to derive the same distance formula. Additionally, an alternative approach using a circle centered at the point is suggested, which relates the distance to the condition of tangency between the circle and the line. A theorem is also introduced, stating that the distance from a point to a line defined by L(x, y) = 0 can be expressed as |L(x₀, y₀)| / ||n||, where n is the normal vector to the line. Overall, the thread provides comprehensive methods for determining the shortest distance from a point to a line in a coordinate system.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
In analytic or coordinate geometry, we are often asked to work problems that involve using the perpendicular (shortest) distance between a point and a line in the plane. Here are two methods to find this distance:

Method 1:

In the xy plane, we have a point $\displaystyle P_0\left(x_0,y_0 \right)$ separated from a line $\displaystyle y=mx+b$ by some distance $\displaystyle d>0$.

Extend a line segment from the point to the line such that the segment intersects perpendicularly with the line y. Label this segment d.

Now extend a vertical line segment from the point to the line and we find its length is $\displaystyle a=\left|mx_0+b-y_0 \right|$ (using $\displaystyle y\left(x_0 \right)-y_0$).

Next, extend a horizontal line segment from the point to the line and we find its length is $\displaystyle c=\left|x_0-\frac{y_0-b}{m} \right|$ (using $\displaystyle x_0-x\left(y_0 \right)$) thus:

$\displaystyle c=\left|\frac{mx_0+b-y_0}{m} \right|=\frac{a}{|m|}$

Please refer to the diagram:
pointlinedist.jpg

By similarity, we have:

$\displaystyle \frac{d}{c}=\frac{\sqrt{a^2-d^2}}{a}$

$\displaystyle \frac{d}{\sqrt{a^2-d^2}}=\frac{c}{a}=\left|\frac{1}{m} \right|$

$\displaystyle \frac{d^2}{a^2-d^2}=\frac{1}{m^2}\:\therefore\:d^2=\frac{a^2}{m^2+1}\:\therefore\:d=\frac{a}{\sqrt{m^2+1}}$

Thus, we have:

$\displaystyle d=\frac{\left|mx_0+b-y_0 \right|}{\sqrt{m^2+1}}$

Method 2:

First, we find that the line perpendicular to $\displaystyle y=mx+b$ and passing through $\displaystyle P_0$ is:

$\displaystyle y=-\frac{1}{m}\left(x-x_0 \right)+y_0$

Solving the resulting linear system we find the common point to both lines is:

$\displaystyle \left(\frac{x_0+m\left(y_0-b \right)}{m^2+1},\frac{m\left(x_0+my_0 \right)+b}{m^2+1} \right)$

Now, using the distance formula for $\displaystyle P_0$ to the above point, we find:

$\displaystyle d=\sqrt{\left(x_0-\frac{x_0+m\left(y_0-b \right)}{m^2+1} \right)^2+\left(y_0-\frac{m\left(x_0+my_0 \right)+b}{m^2+1} \right)^2}$

The reader should verify that this reduces to:

$\displaystyle d=\frac{\left|mx_0+b-y_0 \right|}{\sqrt{m^2+1}}$

Comments and questions should be posted here:

http://mathhelpboards.com/commentary-threads-53/commentary-finding-distance-between-point-line-5966.html
 
Last edited by a moderator:
Physics news on Phys.org
This topic is for comments/questions pertaining to this tutorial:

http://mathhelpboards.com/math-notes-49/finding-distance-between-point-line-2952.html
 
MarkFL said:
This topic is for comments/questions pertaining to this tutorial:

http://mathhelpboards.com/math-notes-49/finding-distance-between-point-line-2952.html
There is another nice way to do it.

Let $C$ be the circle $(x-x_0)^2+(y-y_0^2)=r^2$ centered at $P$ and having radius $r$. The line $y=mx+b$ can have two points in common or one point in common or no points on common with $C$. Assume $m\neq 0$ because if it is then the answer is easily found. The perpendicular distance from $P$ to $y=mx+b$ is equal to the radius $r$ corresponding to which there is exactly one point in common between $y=mx+b$ and $C$. For this we substitute $x=(y-b)/m$ in $C$ and find a quadratic in $y$. For having just one root of this we just need to set the discriminant to zero and find the desired result.
 
I suggest the following proof that deals with the general (or standard) form of the line equation rather than the slope–intercept form.

Suppose in a Cartesian coordinate system a line $l$ is given by the equation $L(x,y)=0$ where $L(x)=Ax+By+C$. Also, let $\vec{n}=(A,B)$.

Theorem. The distance $d(P_0,l)$ from any point $P_0(x_0,y_0)$ to $l$ is $L(x_0,y_0)/|\vec{n}|$.

Proof. Let $P_1(x_1,y_1)$ be any point on $l$ (thus, $L(x_1,y_1)=0$) and let $\varphi$ be the (smaller) angle between $\overrightarrow{P_1P_0}$ and $\vec{n}$. Since $\vec{n}$ is perpendicular to $l$ (Lemma 2 below), we have
\begin{align*}
d(P_0,l)&= |\overrightarrow{P_1P_0}|\cdot|\cos\varphi|\\
&=\frac{|\overrightarrow{P_1P_0}\cdot\vec{n}|} {|\vec{n}|}\\
&= \frac{|A(x_0-x_1)+B(y_0-y_1|)}{|\vec{n}|}\\
&=\frac{|L(x_0,y_0)-L(x_1,y_1)|}{|\vec{n}|}\\
&=\frac{|L(x_0,y_0)|}{|\vec{n}|}
\end{align*}

Since $|\vec{n}|=\sqrt{A^2+B^2}$, $d(P_0,l)$ can be expanded to
\[
\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}
\]

Lemma 1. Vector $(-B,A)$ is parallel to $l$. This holds in any affine coordinate system, not necessarily a Cartesian one.

Proof. Let $P_0(x_0,y_0)$, $P_1(x_1,y_1)$ be two different points on $l$. Then $\overrightarrow{P_0P_1}=(x_1-x_0,y_1-y_0)$ is parallel to $l$. Also,
\[
L(x_1,y_1)-L(x_1,y_1)=A(x_1-x_0)+B(y_1-y_0)=0
\]
or
\[
A(x_1-x_0)=-B(y_1-y_0)\tag{*}
\]
If $A\ne0$ and $B\ne0$, then (*) is equivalent to
\[
\frac{x_1-x_0}{-B}=\frac{y_1-y_0}{A}
\]
But even if $A=0$ or $B=0$ (but not $A=B=0$), (*) expresses the fact that $(x_1-x_0,y_1-y_0)$ is proportional to, and thus parallel to, $(-B,A)$.

Lemma 2. If the coordinate system is Cartesian, then $n$ is perpendicular to $l$.

Proof. By Lemma 1, vector $\vec{p}=(-B,A)$ is parallel to $l$, and $\vec{n}\cdot\vec{p}=-AB+BA=0$, so $n$ is perpendicular to $p$ and to $l$.
 
Last edited:
Back
Top