sbryant1014
- 4
- 0
1. What are the possible eigenvalues of the spin operator \vec{S} for a spin 1/2 particle?
I think these are correct:
\vec{S} = \frac{\hbar}{2} ( \sigma_x + \sigma_y + \sigma_z )
\sigma_x = \left(\begin{array}{cc}0 & 1\\1 & 0\end{array}\right),\quad <br /> \sigma_y = \left(\begin{array}{cc}0 & -i\\i & 0\end{array}\right),\quad <br /> \sigma_z = \left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right),\quad <br />
\text{Define } {\bf \sigma} = \sigma_x + \sigma_y + \sigma_z = \left(\begin{array}{cc}1 & 1-i\\1+i & -1\end{array}\right)
To find the eigenvalues, solve the characteristic polynomial:
\det (\sigma - \lambda {\bf I}) = 0
\Rightarrow \lambda = \pm \sqrt{3}
So that the eigenvalues of the original operator, \vec{S} are \pm \frac{\hbar}{2} \sqrt{3}?
I'm not sure if I can just add the pauli matrices like that
Homework Equations
I think these are correct:
\vec{S} = \frac{\hbar}{2} ( \sigma_x + \sigma_y + \sigma_z )
\sigma_x = \left(\begin{array}{cc}0 & 1\\1 & 0\end{array}\right),\quad <br /> \sigma_y = \left(\begin{array}{cc}0 & -i\\i & 0\end{array}\right),\quad <br /> \sigma_z = \left(\begin{array}{cc}1 & 0\\0 & -1\end{array}\right),\quad <br />
The Attempt at a Solution
\text{Define } {\bf \sigma} = \sigma_x + \sigma_y + \sigma_z = \left(\begin{array}{cc}1 & 1-i\\1+i & -1\end{array}\right)
To find the eigenvalues, solve the characteristic polynomial:
\det (\sigma - \lambda {\bf I}) = 0
\Rightarrow \lambda = \pm \sqrt{3}
So that the eigenvalues of the original operator, \vec{S} are \pm \frac{\hbar}{2} \sqrt{3}?
I'm not sure if I can just add the pauli matrices like that