Model for a Qubit system using the Hamiltonion Operator

In summary, the conversation discusses a mathematical calculation involving eigenvalues and eigenvectors. The speaker is not sure if they have calculated it correctly and requests help. They mention using the usual formula for calculating eigenvalues and provide the resulting values. They also mention using Mathematica to calculate the normalized eigenvectors, but the other person suggests using LaTeX instead. The conversation then goes on to discuss the correct symbols to use and the importance of showing work. The speaker then confirms their calculations and provides the normalized eigenvectors. The other person explains the importance of using a substitution to make the algebra more transparent. The conversation ends with a discussion about verifying the eigenvectors using a calculation.
  • #1
Lambda96
158
59
Homework Statement
Calculate the eigenvalues and eigenvectors of the Hamilton operator
Relevant Equations
none
Hi,

unfortunately, I am not sure if I have calculated the task a correctly.

Bildschirmfoto 2023-06-06 um 14.56.03.png

I calculated the eigenvalues with the usual formula ##\vec{0}=(H-\lambda I) \psi## and got the following results

$$\lambda_1=E_1=-\sqrt{B^2+\nabla^2}$$
$$\lambda_2=E_2=\sqrt{B^2+\nabla^2}$$

I'm just not sure about the normalized eigenvectors, I got the following as eigenvectors

$$\vec{\psi}_1= \left(\begin{array}{c} \frac{B- \sqrt{B^2+\triangle^2}}{\triangle} \\ 1 \end{array}\right)$$
$$\vec{\psi}_2= \left(\begin{array}{c} \frac{B+ \sqrt{B^2+\triangle^2}}{\triangle} \\ 1 \end{array}\right)$$

For the normalization, I must divide the vectors by their norm. Since writing this vector via Latex is very time-consuming, I have calculated this with Mathematica, instead of the triangle, I have simply written an A. For the eigenvector ##\vec{\psi_1}## I got the following:

Bildschirmfoto 2023-06-06 um 15.33.35.png

Since this eigenvector looks very messy, I am not sure if I have calculated the task correctly now.
 
Physics news on Phys.org
  • #2
First you need to be less confusing with your symbols. Use \Delta for ##\Delta## and not ##\nabla##, ##\triangle## or ##A##.
According to our rules, to receive help, you need to show your work. The derivation of the normalized eigenvectors is straightforward but I cannot guide you to it unless I see what what you did. Try to use LaTeX, but if you must use Mathematica, did you know that you can export its equations in LaTeX?

Addendum on edit:
Your expression for ##|\psi_1\rangle## is not correct because it is not a constant times the unnormalized ##|\psi_1\rangle##. If you factor out the denominator, you are left with $$
\begin{pmatrix}
\frac{-B-\sqrt{B^2+\Delta ^2}}{\Delta} & 1
\end{pmatrix}$$while the unnormalized vector is
$$
\begin{pmatrix}
\frac{B-\sqrt{B^2+\Delta ^2}}{\Delta} & 1
\end{pmatrix}.$$I suggest that you replace the radical with a single symbol, e.g. ##R\equiv \sqrt{B^2+\Delta^2}.## It will make the algebra more transparent.
 
Last edited:
  • Like
Likes Lambda96
  • #3
Thanks kuruman for your help 👍

Sorry, because of all the different symbols, unfortunately I still had in mind that it is the Nabla operator ##\nabla##. I had then changed all symbols by ##\triangle## and forgotten the change in the eigenvalues. But as you already said correctly, it should be ##\Delta##
kuruman said:
Try to use LaTeX, but if you must use Mathematica, did you know that you can export its equations in LaTeX?
I did not know that, thanks for the tip 👍
I have now been able to confirm by the following calculation that these are the eigenvectors of A

$$H \vec{\psi}_1=E_1 \vec{\psi}_1$$
$$H \vec{\psi}_2=E_2 \vec{\psi}_2$$

The normalized eigenvectors are then as follows.

$$\hat{\psi}_1=\frac{1}{\sqrt{\biggl( \frac{(B-\sqrt{B^2+\Delta^2})}{\Delta} \biggr)^2+1}} \cdot \left(\begin{array}{c} \frac{B-\sqrt{B^2+\Delta^2}}{\Delta} \\ 1 \end{array}\right)$$

$$\hat{\psi}_2=\frac{1}{\sqrt{\biggl( \frac{(B+\sqrt{B^2+\Delta^2})}{\Delta} \biggr)^2+1}} \cdot \left(\begin{array}{c} \frac{B+\sqrt{B^2+\Delta^2}}{\Delta} \\ 1 \end{array}\right)$$
 
  • #4
This is how I would do it.

The unnormalized eigenvector corresponding to ##E_1## is $$|\psi_1\rangle=
\begin{pmatrix}
\frac{B-R}{\Delta} \\
1
\end{pmatrix}~~~R\equiv \sqrt{B^2+\Delta^2}.
$$Let ##N## be the normalization constant by which you must multiply the eigenvector. Then $$\begin{align} 1= & N^2\langle \psi_1 | \psi_1\rangle = \left(\frac{B-R}{\Delta}\right)^2+1= \frac{B^2-2BR+R^2+\Delta^2}{\Delta^2}=\frac{2R^2-2BR}{\Delta^2 }=\frac{2R(R-B)}{\Delta^2} \nonumber \\
& \implies N=\frac{\Delta}{\sqrt{2R(R-B)}}

\nonumber \end{align}$$and the normalized eigenvector is
$$|\psi_1\rangle=\frac{1}{\sqrt{2R(R-B)}}
\begin{pmatrix}
{B-R} \\
\Delta
\end{pmatrix}.
$$The normalized eigenvector corresponding to ##E_2## is obtained by swapping the column vector elements and introducing a relative minus sign. Obviously, the overall phase doesn't matter.
$$|\psi_2\rangle=\frac{1}{\sqrt{2R(R-B)}}
\begin{pmatrix}
-\Delta \\
B-R
\end{pmatrix}.$$It is immediately clear that the above vectors are orthonormal. In your expression that is not obvious. That is what I meant when I said that the substitution ##R=\sqrt{B^2+\Delta^2}## in such problems makes the algebra transparent.
 
  • Like
Likes Lambda96
  • #5
Thanks again kuruman for your help and for the tip with the calculation of the normalization constant ##N## 👍👍.

I would have only one question, concerning the normalized eigenvector ##\hat{\psi}_2##.

I would have now calculated the normalization constant exactly as for ##\hat{\psi}_1## and got the following

$$N=\frac{\Delta}{\sqrt{2R(R+B)}}$$

I would then get the following as the normalized eigenvector.

$$\hat{\psi}_2=\frac{\Delta}{\sqrt{2R(R+B)}} \cdot \left(\begin{array}{c} B+R \\ 1 \end{array}\right)$$

Unfortunately, I don't quite understand why I also get the eigenvector when I swap the columns for the normalized eigenvector ##\hat{\psi}_1## and multiply by minus. I wanted to verify with the calculation ##H\hat{\psi}_2=E_2 \hat{\psi}_2## that it is an eigenvector of H and unfortunately I got the following.

$$H \cdot \left(\begin{array}{c} -\Delta \\ B-R \end{array}\right)=\frac{\Delta}{\sqrt{2R(R+B)}} \cdot \left(\begin{array}{c} -\Delta R\\ -\Delta^2-B(B-R) \end{array}\right)$$

The first line is correct, only with the second line I have problems.

Is it possible to determine the normalized eigenvectors of a 2x2 matrix with this trick, or only in certain cases?
 
  • #6
First of all this $$\hat{\psi}_2=\frac{\Delta}{\sqrt{2R(R+B)}} \cdot \left(\begin{array}{c} B+R \\ 1 \end{array}\right)$$is dimensionally incorrect. The first element in the column vector has dimensions of energy while the second element is dimensionless. That cannot be. Also, I think you should have a term ##(R-B)## in the denominator, not ##(R+B).## Recheck your work.

Lambda96 said:
Is it possible to determine the normalized eigenvectors of a 2x2 matrix with this trick, or only in certain cases?
It is possible to use this trick with any 2×2 matrix. In the more general case where the eigenvectors have complex coefficients, let the normalized eigenvectors be
##|\psi_1\rangle=a_1|1\rangle +b_1|2\rangle~~~(|a_1|^2+|b_1|^2=1).##
##|\psi_2\rangle=a_2|1\rangle +b_2|2\rangle~~~(|a_2|^2+|b_2|^2=1).##
To ensure that they are orthogonal, you must have
$$0=\langle\psi_2|\psi_1\rangle=
\begin{pmatrix}
{a^*_2} & b^*_2
\end{pmatrix}
\begin{pmatrix}
{a_1} \\ b_1
\end{pmatrix}=a^*_2a_1+b^*_2b_1.
$$Once you obtain ##a_1## and ##b_1## for the first eigenvector, you can immediately write ##a_2\rightarrow -b^*_1## and ##b_2\rightarrow a^*_1## because then $$a^*_2a_1+b^*_2b_1\rightarrow (-b^*_1)^*a_1+ (a^*_1)^*b_1=-b_1a_1+a_1b_1=0.$$Of course, if the coefficients are real as in this case, you don't have to worry about the complex conjugates, just swap elements and introduce a relative negative sign.
 
  • Like
Likes Lambda96
  • #7
Thanks kuruman for your help and your explanation for finding the eigenvectors of a 2x2 matrix👍👍, for future tasks, this will simplify the calculation :smile:
 

1. What is the Hamiltonian Operator?

The Hamiltonian Operator is a mathematical operator used in quantum mechanics to describe the total energy of a system. It takes into account the kinetic and potential energies of all the particles in the system.

2. How is the Hamiltonian Operator used in a Qubit system?

In a Qubit system, the Hamiltonian Operator is used to represent the energy levels of the qubits and how they interact with each other. It is used to calculate the evolution of the system over time and to determine the probabilities of different outcomes.

3. What is the significance of the eigenvalues of the Hamiltonian Operator in a Qubit system?

The eigenvalues of the Hamiltonian Operator represent the possible energy levels of the qubits in a Qubit system. These energy levels determine the probabilities of different outcomes when measurements are made on the system.

4. How does the Hamiltonian Operator relate to the quantum state of a Qubit system?

The Hamiltonian Operator is used to calculate the time evolution of the quantum state of a Qubit system. It is also used to determine the probabilities of different outcomes when measurements are made on the system.

5. Are there any limitations to using the Hamiltonian Operator in a Qubit system?

While the Hamiltonian Operator is a powerful tool in describing the behavior of Qubit systems, it does have some limitations. It assumes that the system is in a pure state and does not take into account any external factors that may affect the system. It also does not account for any quantum effects such as entanglement between qubits.

Similar threads

  • Advanced Physics Homework Help
Replies
9
Views
1K
  • Advanced Physics Homework Help
Replies
19
Views
912
  • Advanced Physics Homework Help
Replies
5
Views
760
  • Advanced Physics Homework Help
Replies
7
Views
1K
  • Advanced Physics Homework Help
Replies
6
Views
613
  • Advanced Physics Homework Help
Replies
14
Views
1K
  • Advanced Physics Homework Help
Replies
13
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
913
  • Advanced Physics Homework Help
Replies
3
Views
1K
  • Advanced Physics Homework Help
Replies
9
Views
864
Back
Top