MHB Finding the Equation of a Plane Perpendicular to a Given Line

  • Thread starter Thread starter brunette15
  • Start date Start date
  • Tags Tags
    Plane
Click For Summary
To find the equation of a plane that passes through the point (2, 1, 5) and is perpendicular to the line defined by points A(0, 1, 1) and B(1, -1, -1), first determine the direction vector of the line, which is (1, -2, -2). This direction vector serves as the normal vector for the plane. The general equation of the plane can be expressed as ax + by + cz = d, where (a, b, c) corresponds to the normal vector. To find the value of d, substitute the coordinates of the point (2, 1, 5) into the equation, resulting in the equation 2a + b + 5c = d. This process outlines the steps needed to derive the plane's equation.
brunette15
Messages
58
Reaction score
0
I am trying to find an equation for a plane that passes through the point (2, 1, 5) however is also perpendicular to the line that passes through the points A(0, 1, 1) and B(1,-1,-1).

I am unsure how to begin with this. I have started by finding the normal vector to A and B = (0,1,-1), to find the direction of the plane and don't really know what to do from here.
 
Physics news on Phys.org
My suggestion would be:

Step 1: Use the two points $A$ and $B$ on the straight line to determine the direction of the line.
Step 2: Since the plane is perpendicular to the line, the direction of the line is a normal to the plane. If we let $(a,b,c)$ be your computed normal to the plane then the equation of the plane is given by: $ax+by+cz=d$, where $d$ is still unknown.
Step 3: Last step is to find $d$, but that is now straightforward since the plane passes through the point $(2,1,5)$ and thus $2a+b+5c=d$.
 
Siron said:
My suggestion would be:

Step 1: Use the two points $A$ and $B$ on the straight line to determine the direction of the line.
Step 2: Since the plane is perpendicular to the line, the direction of the line is a normal to the plane. If we let $(a,b,c)$ be your computed normal to the plane then the equation of the plane is given by: $ax+by+cz=d$, where $d$ is still unknown.
Step 3: Last step is to find $d$, but that is now straightforward since the plane passes through the point $(2,1,5)$ and thus $2a+b+5c=d$.

Thankyou so much!
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K