Finding the frequency of a string based on Mass and Tension

AI Thread Summary
The discussion revolves around calculating the frequency of a string using the formula ƒ=sqrt(T / u) / 2L. The user calculated tension (T) as 490N and linear mass density (u) as 0.04285 kg/m, leading to a frequency of 76.38Hz. There is confusion regarding the division by 2L, questioning if it was necessary or if the original answer omitted this step. Additionally, the user raises a point about whether the wave can freely vibrate over the entire 70 cm length, considering the effects at the pulley. Clarification on these calculations and assumptions is sought.
SoundsofPhysics
Messages
2
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
I saw the following problem in a test I was reviewing:
1641660422506.png

I don't understand how they got their answer. I used the formula: ƒ=sqrt(T / u) / 2L where f is the frequency of the string, T is the tension, u is the linear mass density, and L is the length of the string.
I got:
T = mg = 50 * 9.8 = 490N
u = m/l = 3/7 g/cm = 0.04285 kg/m
L = 70cm = 0.7m
Therefore f = sqrt(490 / 0.04285) / 1.4 = 106.93 / 1.4 = 76.38Hz. I see that they got their answer from the first part, but did they forget to divide by 2L, or was I not supposed to do that? Thanks!
 
Physics news on Phys.org
Can the wave freely vibrate over the entire 70 cm length? Think about what happens at the pulley.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top