Finding the frequency of a string based on Mass and Tension

Click For Summary
The discussion revolves around calculating the frequency of a string using the formula ƒ=sqrt(T / u) / 2L. The user calculated tension (T) as 490N and linear mass density (u) as 0.04285 kg/m, leading to a frequency of 76.38Hz. There is confusion regarding the division by 2L, questioning if it was necessary or if the original answer omitted this step. Additionally, the user raises a point about whether the wave can freely vibrate over the entire 70 cm length, considering the effects at the pulley. Clarification on these calculations and assumptions is sought.
SoundsofPhysics
Messages
2
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
I saw the following problem in a test I was reviewing:
1641660422506.png

I don't understand how they got their answer. I used the formula: ƒ=sqrt(T / u) / 2L where f is the frequency of the string, T is the tension, u is the linear mass density, and L is the length of the string.
I got:
T = mg = 50 * 9.8 = 490N
u = m/l = 3/7 g/cm = 0.04285 kg/m
L = 70cm = 0.7m
Therefore f = sqrt(490 / 0.04285) / 1.4 = 106.93 / 1.4 = 76.38Hz. I see that they got their answer from the first part, but did they forget to divide by 2L, or was I not supposed to do that? Thanks!
 
Physics news on Phys.org
Can the wave freely vibrate over the entire 70 cm length? Think about what happens at the pulley.
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?