Finding the frequency of a string based on Mass and Tension

AI Thread Summary
The discussion revolves around calculating the frequency of a string using the formula ƒ=sqrt(T / u) / 2L. The user calculated tension (T) as 490N and linear mass density (u) as 0.04285 kg/m, leading to a frequency of 76.38Hz. There is confusion regarding the division by 2L, questioning if it was necessary or if the original answer omitted this step. Additionally, the user raises a point about whether the wave can freely vibrate over the entire 70 cm length, considering the effects at the pulley. Clarification on these calculations and assumptions is sought.
SoundsofPhysics
Messages
2
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
I saw the following problem in a test I was reviewing:
1641660422506.png

I don't understand how they got their answer. I used the formula: ƒ=sqrt(T / u) / 2L where f is the frequency of the string, T is the tension, u is the linear mass density, and L is the length of the string.
I got:
T = mg = 50 * 9.8 = 490N
u = m/l = 3/7 g/cm = 0.04285 kg/m
L = 70cm = 0.7m
Therefore f = sqrt(490 / 0.04285) / 1.4 = 106.93 / 1.4 = 76.38Hz. I see that they got their answer from the first part, but did they forget to divide by 2L, or was I not supposed to do that? Thanks!
 
Physics news on Phys.org
Can the wave freely vibrate over the entire 70 cm length? Think about what happens at the pulley.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top